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Abstract

Segmentation and Detection Of Indoor Fires Using Deep Learning Methods

Fire is a chemical process of rapid oxidation of combustible material during which heat
and light are released, often accompanied by various gaseous combustion products. From
a physical perspective, fire represents a visible manifestation of energy transfer in the form
of electromagnetic radiation and heat generated during this exothermic process. Fires are
generally classified as either indoor or outdoor, depending on the spatial environment in
which they occur. Indoor fires develop within enclosed spaces such as offices, warehouses, or
factories, while outdoor fires emerge in open areas, including fields, forests, and the building
exteriors. Their characteristics differ not only in terms of setting but also in their dynamics
and methods of suppression. Indoor fires are characterized by the rapid accumulation of heat
and smoke, which necessitate direct entry into the structure and careful fire suppression
techniques. Outdoor fires, in contrast, are strongly influenced by weather conditions and
terrain, making suppression reliant on wide containment lines and often aerial support. In
2023, fire departments in the United States responded to more than 1.39 million fires, which
resulted in 3,670 civilian deaths and 13,350 injuries. The direct material losses were estimated
at 23 billion US dollars.

There are two primary approaches to fire detection: traditional, sensor-based, and
modern, image-based. The traditional method relies on sensors that monitor physical
parameters such as temperature, humidity, pressure, and the concentration of toxic gases.
While widely used, such systems are often have long response time and may fail to detect a
fire in its early stages, or in some cases, miss it entirely. More recently, image-based
methods have emerged as a superior alternative. By analyzing visual data, these systems
provide critical information on the location, size, and development of a fire. They may also
identify hazardous scenarios that could trigger ignition, thus preventing the fire. Early
research employed classical computer vision techniques, such as contour detection and
k-means clustering, but the results were often unreliable and slower than those of
sensor-based approaches. The development of deep learning has marked a turning point.
Deep neural networks can autonomously learn representations and extract features from
visual data, thereby eliminating the need for handcrafted feature design, which was a
central component of earlier methods. These networks identify hierarchical patterns,
ranging from simple edges and textures to complex objects and scenes, making them highly

effective for recognition, segmentation, and classification tasks. This dissertation places



particular emphasis on semantic segmentation, which enables the precise extraction of
flame and smoke regions from an input image. Such precision is critical for reliable indoor
fire detection. Consequently, deep neural networks are increasingly utilized for fire
detection in images and videos, demonstrating superior detection speed and accuracy
compared with earlier approaches. Nevertheless, detecting fires in indoor industrial
environments remains a highly challenging task. Such incidents are rare, dangerous to
document, and often occur in restricted or inaccessible spaces, which limits the availability
of real-world training data. Furthermore, the visual characteristics of fire can resemble
light reflections and other disturbances, making recognition more challenging. For these
reasons, this dissertation focuses on the detection of indoor fires in industrial settings and
examines how deep learning can help overcome these obstacles. Despite rapid advances in
deep learning and the increase of computational power through graphics processing units
(GPUs), researchers still face considerable challenges. The main challenge is the shortage
of high-quality datasets. Majority of existing research has focused on outdoor fires,
particularly forest fires, resulting in datasets tailored to such contexts.

In contrast, studies of indoor fires remain scarce, largely because specialized public
datasets are lacking. Unlike outdoor scenarios, where extensive image and video collections
exist, acquiring real-world indoor fire data is extremely difficult due to the rarity of such
events, the risks involved in its acquisition, and the limitations imposed by private or
restricted spaces. Another challenge is annotating fire images, as flames and smoke are
naturally dynamic, with irregular and constantly shifting shapes that make precise
annotation difficult. The problem is further compounded by visual similarities between fire
and other phenomena such as glare, reflections, or environmental noise, which increase the
likelihood of annotation errors and reduce the reliability of machine learning models.
Synthetic data provides a promising solution to these challenges. Generated through
algorithms and simulations, synthetic datasets are particularly valuable when real data are
scarce, costly to annotate, or biased. If synthetic images incorporate realistic fire features
and visual authenticity, they enable better generalization and help narrow the gap between
real and generated scenarios. Researchers increasingly rely on diffusion models, generative
adversarial networks, and 3D simulation tools to create visual representations of flames,
smoke, and complex fire events in industrial environments. Such approaches enable the
modeling of rare or hazardous situations that would otherwise be impossible to capture,
allowing for safer testing and more robust training of fire detection models.

This dissertation addresses the detection of indoor fires in industrial settings by proposing
a deep learning method based on semantic segmentation for the precise extraction of flame
regions. Additionally, it examines the application of synthetic data as a substitute for scarce
real-world data, with a focus on maintaining or even enhancing the performance of deep

neural networks. The dissertation makes the following original scientific contributions:



1. A semantic segmentation model of fire based on an ensemble of deep
neural networks. A novel segmentation model for fire detection is presented, which
integrates the outputs of five state-of-the-art approaches to achieve improved
segmentation accuracy. The evaluation of existing models on a proprietary dataset
guided the development of the Feature Merging Model (F2M), designed to enhance
both accuracy and reliability by incorporating uncertainty estimation. The
application of Monte Carlo dropout during inference resulted in improved

performance compared to the individual models.

2. A publicly available dataset of synthetic images for semantic fire
segmentation in industrial environments. Despite advances in more robust
machine learning models, their performance remains constrained by the scarcity of
data. To address this issue, a new synthetic dataset called SYN-FIRE has been
proposed for detecting indoor fires in industrial environments. This dataset is the
first publicly available dataset of its kind, providing researchers with access to
structured and annotated synthetic data for the semantic segmentation of fire. A
comparison of the SYN-FIRE dataset with existing datasets containing real fire
images demonstrated that synthetic images can, to some extent, serve as substitutes

for real ones, thereby enabling broader use in model training and evaluation.

3. Analysis of the impact of the ratio of synthetic to real data on the
performance of fire segmentation and detection models. The presented
synthetic dataset requires further evaluation to precisely determine its impact on the
performance of image semantic segmentation models. As part of this scientific
contribution, the U-Net+-+ model was trained on a combination of real and synthetic
data. Evaluation was conducted on a test subset of real data, with testing thresholds
determined based on the best results obtained on the validation subset. The impact
of synthetic data was examined through two ablation studies. The first study
explored how model performance is affected when varying proportions of real images
are substituted with synthetic ones. The second study evaluated the effect of
combining synthetic and real data on overall model detection capabilities. The
findings indicate that synthetic data can partially replace real data without causing a
notable decline in performance, and in cases with smaller datasets, it even led to

performance gains.

As a result of the research presented in this doctoral dissertation, four papers were
published in international scientific journals (three as first author and one as co-author) and
seven papers were presented at international scientific conferences (including one as first

author).



Keywords: Deep Learning, Fire Dataset, Fire Detection, Industrial Fire, Synthetic
Data.



Sazetak

Segmentacija i detekcija unutarnjih pozara koristenjem metoda dubokog uc¢enja

Vatra je kemijski proces brze oksidacije gorive tvari pri kojem se oslobada toplina i
svjetlost, a Cesto i razli¢iti plinoviti produkti sagorijevanja. S fizikalnog stajalista, vatra
predstavlja vidljivu manifestaciju prijenosa energije u obliku elektromagnetskog zracenja i
topline nastale tijekom tog egzotermnog procesa. Pozari se dijele na vanjske i unutarnje, a
razlikuju se prema prostornom okruzenju u kojem nastaju. Unutarnji pozari razvijaju se u
zatvorenim prostorima (uredski prostori, skladista, tvornice), dok se vanjski pozari
razvijaju na otvorenim povrSinama (livade, Sume, gradevinski objekti izvana). Pozari se
razlikuju i prema dinamici Sirenja pozara (kod unutarnjih pozara dominira brzo
nakupljanje topline i dima, dok kod vanjskih pozara veliku ulogu imaju vremenski uvjeti i
topografija terena) i pristupu gaSenja (unutarnji zahtijevaju ulazak u objekt i kontrolu
ventilacije, a vanjski zahtijevaju koristenje Sirokih fronti i zra¢nih snaga). U 2023. godini
vatrogasne postrojbe u Sjedinjenim Americkim Drzavama (SAD) intervenirale su na vise
od 1,39 milijuna pozara, pri ¢emu je smrtno stradalo 3.670 civila, a njih 13.350 zadobilo je
ozljede. Osim toga, pozari su prouzrocili izravnu materijalnu Stetu procijenjenu na 23
milijarde americkih dolara. Rana detekcija i prevencija pozara od presudne su vaznosti jer
omogucuju pravovremenu kontrolu Sirenja, smanjenje ugroze ljudskih Zivota te
minimiziranje materijalne Stete. Postoje dvije metode detekcije pozara. Prva se temelji na
senzorima i pripada tradicionalnom pristupu, dok druga koristi kamere i obradu slike kao
suvremeni oblik pracenja. Tradicionalni senzorski sustavi prate fizicke parametre, poput
temperature, vlage, tlaka i koncentracije toksi¢nih plinova, no oni su spori i Cesto ne
uspijevaju otkriti pozar u njegovoj ranoj fazi, a ponekad ga uopce ne registriraju. Metode
zasnovane na obradi slike pokazale su se znatno u¢inkovitijima jer pruzaju informacije o
prostoru u kojem pozar nastaje, o njegovoj veli¢ini, brzini Sirenja i preciznoj lokaciji. Osim
same detekcije, takvi sustavi mogu prepoznati i riziéne situacije koje prethode izbijanju
pozara, ¢ime doprinose njegovoj prevenciji. U prvim istrazivanjima koristile su se klasi¢ne
tehnike racunalnog vida, poput detekcije kontura ili grupiranja metodom K-srednjih
vrijednosti, no rezultati su ¢esto bili nepouzdani i sporiji od senzorskih sustava. Razvoj]
dubokog ucenja u podrucju racunalnog vida omogucéio je znacajan iskorak. Duboke
neuronske mreze samostalno uce reprezentacije i izdvajaju znacajke iz vizualnih podataka,

¢ime se uklanja potreba za ru¢nim oblikovanjem znacajki koje je bilo klju¢no u klasi¢nim



metodama. Sustavi tako prepoznaju hijerarhijske obrasce, od jednostavnih rubova i
tekstura do slozenih objekata i scena, Sto ih ¢ini iznimno djelotvornima u prepoznavanju,
segmentaciji i klasifikaciji. U ovoj doktorskoj disertaciji naglasak je na primjeni semanticke
segmentacije koja omogucuje precizno izdvajanje podrucja plamena i dima unutar slike, sto
predstavlja kljucan korak u pouzdanoj detekciji unutarnjih pozara. Zbog toga se duboke
neuronske mreze sve CeS¢e primjenjuju u detekciji vatre na slikama i videozapisima te
postizu vecu brzinu i pouzdanost u odnosu na ranije pristupe. Unato¢ ostvarenim
napredcima, detekcija pozara u zatvorenim prostorima i dalje je posebno zahtjevna.
Unutarnji pozari u industrijskim okruzenima rijetko se dogadaju, otezano se dokumentiraju
zbog opasnosti i nedostupnosti lokacija, a njihovo prepoznavanje dodatno kompliciraju
vizualne sli¢nosti sa svjetlosnim odsjajima i drugim smetnjama. Zbog toga se ova
doktorska disertacija usmjerava upravo na problem detekcije unutarnjih pozara u
industrijskim okruzenjima te istrazuje kako primjena dubokog ucenja moze doprinijeti
prevladavanju navedenih izazova. Unato¢ brzom napretku u podru¢ju dubokog ucenja i
razvoju grafickih procesorskih jedinica (GPU-a), istrazivadi se i dalje suocavaju s brojnim
izazovima u razvoju modela za detekciju vatre. Najveéi izazov pritom ostaje nedostatak
visokokvalitetnih skupova podataka, neovisno o rastucoj slozenosti i u¢inkovitosti modela.
Dosadasnja su istrazivanja uglavnom bila usmjerena na vanjske pozare, osobito Sumske, sto
je rezultiralo skupovima podataka primarno prilagodenima takvim scenarijima. Nasuprot
tome, istrazivanja usmjerena na pozare u zatvorenim prostorima znatno su rjeda, ponajvise
zbog izrazite oskudice specijaliziranih skupova podataka. Za razliku od vanjskih pozara, za
koje postoje opsezne baze slika i videozapisa, stvarne podatke o pozarima u zatvorenim
prostorima izrazito je tesko prikupiti, budué¢i da su takvi incidenti rijetki, opasni za
dokumentiranje te se Cesto odvijaju u privatnim ili ograni¢enim prostorima, $to otezava
njihovu dostupnost i anotaciju. Dodatni izazov predstavlja samo anotiranje slika za
detekciju vatre. Dinami¢na priroda plamena i dima, s nepravilnim i stalno promjenjivim
oblicima, otezava precizno oznaCavanje konvencionalnim tehnikama. Slozenost dodatno
povecava Cinjenica da vizualne karakteristike vatre cesto nalikuju svjetlosnim odsjajima,
refleksijama ili drugim vizualnim Sumovima u okolini, Sto povec¢ava vjerojatnost pogresne
anotacije i posljedicno naruSava kvalitetu modela strojnog ucenja. Sinteticki podaci
pruzaju ucinkovit nacin za prevladavanje ogranic¢enih skupova podataka u razvoju modela
dubokog ucenja za detekciju pozara u industrijskim prostorima, a stvaraju se rac¢unalnim
algoritmima i simulacijama te su posebno vrijedni kada su stvarni podaci oskudni, skupi za
oznacCavanje ili pristrani. Ako sinteticke slike sadrze realisti¢ne znacajke vatre i vizualnu
autenti¢nost, omoguéuju modelima bolju generalizaciju i smanjenje razlike izmedu stvarnih
i generiranih prikaza. Za takve zadatke istrazivaci se Cesto oslanjaju na difuzijske modele,
generativne suparnicke mreze i 3D simulacijski softver, sto omogucéuje stvaranje prikaza
plamena, dima i slozenih pozarnih scenarija u zatvorenim industrijskim okruzenjima. Time

se mogu obuhvatiti rijetke ili opasne situacije koje je tesko dokumentirati u praksi.



Primjena sintetickih podataka u ovom kontekstu postaje sve vaznija jer omogucéuje
sigurnija testiranja i robusnije treniranje modela za detekciju unutarnjih pozara.

Ova doktorska disertacija usmjerena je na problem detekcije unutarnjih pozara u
industrijskim okruzenjima te predlaze metodu dubokog ucenja temeljenu na semantickoj
segmentaciji za precizno izdvajanje podrucja plamena. Dodatno, istrazuje se uporaba
sintetickih podataka, kao alternative stvarnim, kako bi se prevladala njihova oskudica uz
naglasak na ocuvanju ili poboljSanju performansi dubokih neuronskih mreza. Disertacija

donosi sljedece izvorne znanstvene doprinose:

1. Model semanticke segmentacije vatre temeljen na ansamblu dubokih
neuronskih mreza. Predstavljena je nova metoda segmentacije slika za
prepoznavanja pozara koja objedinjuje rezultate pet najsuvremenije modela
segmentacije, ¢ime se postize viSa razina preciznosti segmentacije. Provedena je
evaluacija postoje¢ih modela na vlastitom skupu podataka, a na temelju dobivenih
rezultata razvijen je F2M model s ciljem povec¢anja to¢nosti i pouzdanosti kroz
procjenu nesigurnosti.  Primijenjena je Monte Carlo dropout tehnika, ¢ijom je

uporabom ostvareno poboljSanje u odnosu na pojedina¢ne modele segmentacije.

2. Javno objavljen podatkovni skup sintetickih slika za semanticku
segmentaciju vatre u industrijskim prostorima. Unato¢ razvoju robusnijih
modela strojnog ucenja, njihova je izvedba i dalje ograni¢ena nedostatkom podataka.
Motivirani ovim problemom, predloZen je novi sinteticki skup podataka namijenjen
detekciji unutarnjih pozara u industrijskim okruzenjima. Rije¢ je o prvom javno
dostupnom skupu takve vrste, koji istrazivac¢ima omogucuje pristup strukturiranim i
anotiranim sintetickim podacima za semanticku segmentaciju slika. Usporedbom
SYN-FIRE podatkovnog skupa s postojeéim skupovima stvarnih slika pozara
pokazano je da sinteticke slike u odredenoj mjeri mogu zamijeniti stvarne, ¢ime se

otvara mogucénost Sire primjene u treniranju i evaluaciji modela.

3. Analiza utjecaja omjera sintetickih i stvarnih podataka na performanse
modela za segmentaciju i detekciju vatre. Predstavljeni sinteticki podatkovni
skup potrebno je dodatno evaluirati kako bi se precizno utvrdio njegov utjecaj na
performanse modela za semanticku segmentaciju slike. U okviru ovog znanstvenog
doprinosa U-Net+-+ model treniran je na kombinaciji stvarnih i sintetickih podataka.
Evaluacija je provedena na ispitnom podskupu stvarnih podataka, a pragovi koristeni
pri testiranju odredeni su na temelju najboljih rezultata dobivenih na validacijskom
podskupu. Uloga sintetickih podataka analizirana je kroz dvije ablacijske studije. U
prvoj studiji ispitana je povezanost izmedu stvarnih i sintetickih podataka tako da je
odredeni udio stvarnih slika zamijenjen generiranim sintetickim slikama, ¢ime je

procijenjen uc¢inak razli¢itih omjera na performanse modela. U drugoj studiji istrazen

10



je doprinos integracije sintetickih i stvarnih podataka na ukupnu ucinkovitost
modela. Rezultati ovih analiza pokazali su da sinteticki podaci mogu u odredenoj
mjeri zamijeniti stvarne podatke bez znac¢ajnog gubitka performansi modela, dok su

se na manjim skupovima podataka performanse modela dodatno pobolj3ale.

Kao rezultat istrazivanja predstavljenog u ovom doktorskom radu, objavljeno je Cetiri
rada u medunarodnim znanstvenim ¢asopisima (tri kao prvi autor i jedan kao drugi) i sedam

radova na medunarodnim znanstvenim skupovima (od kojih jedan kao prvi autor).

Kljucne rijeci: Detekcija vatre, Duboko ucenje, Industrijski pozari, Podatkovni skupovi

za vatru, Sinteticki podaci
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Introduction

Fire is a highly complex natural event that poses a serious hazard, especially in densely
populated areas, where it can cause severe property damage and loss of life. Fire has been
studied extensively across scientific disciplines, including physics, chemistry, ecology, and
computer science [1]. As urban environments grow denser and the vision of smart cities
becomes reality, the demand for dependable, intelligent fire detection systems continues to
increase [2|. This demand is particularly vital in indoor environments such as residential
buildings, hospitals, schools, and commercial spaces, where rapid and accurate fire
detection can be the difference between a minor incident and a devastating tragedy. At its
core, fire is a chemical reaction in which fuel is rapidly oxidized in the presence of heat and
oxygen, releasing energy in the form of light and heat|[1]. The combustion process produces
characteristic flames whose color, intensity, and behavior depend on the chemical
composition of the burning material and the availability of oxygen [3]. Understanding fire
from a scientific perspective is inherently multidisciplinary, namely physics, chemistry, and
engineering. However, the practical challenge of detecting and responding to unwanted fires
before they cause catastrophic harm falls increasingly within the domain of computer
science and artificial intelligence. The difficulty of achieving reliable early detection has
driven extensive research into fire detection systems, which are commonly categorized into
sensor-based and image-based approaches [4].

Traditional, sensor-based fire detection relies on sensors that respond to smoke
particles, elevated temperatures, or combustion gases. These systems have served well in
many contexts, particularly in enclosed spaces where smoke can accumulate and trigger

alarms. However, they have inherent limitations. Environmental factors can further



degrade performance. Dust, humidity, high ceilings, and strong air currents all affect how
quickly smoke or heat reaches a sensor. Additionally, certain harmless aerosols, such as
those from cooking or steam, can trigger false alarms, eroding trust in these systems over
time. In large or open environments, such as industrial facilities and outdoor settings,
conventional sensors may fail to detect fires until they have grown substantially. Indoor
environments present unique challenges, including variable lighting conditions, cluttered
backgrounds, reflective surfaces, and objects that may visually resemble flames, such as
candles, lamps, or television screens displaying fire imagery.

In contrast to sensor-based systems, image-based fire detection offers a compelling
alternative that addresses many of the above shortcomings. Cameras, whether operating in
the visible spectrum or capturing infrared radiation, can identify flames and smoke from
considerable distances and at very early stages. Flames produce characteristic color
patterns, typically in the yellow, orange, and red ranges, and emit thermal radiation that
infrared cameras can detect even when visible flames are obscured. The flickering dynamics
of fire provide another discriminating feature that helps distinguish genuine combustion
from static light sources or reflections. By analyzing these visual and temporal features,
image-based systems can detect fires sooner than traditional sensors, work effectively in
both indoor and outdoor environments, and provide richer contextual information about
the nature and extent of an incident.

With the development of artificial intelligence, researchers have investigated a variety of
algorithms to detect fire more effectively [5]. In general, computer vision approaches for fire
detection can be categorized into three main areas: image classification, object detection,
and image segmentation. Image classification determines whether fire is present in an
image, object detection localizes fire using bounding boxes, and image segmentation
provides a pixel-level representation of the fire region. While classification and detection
can deliver useful results, they are limited in their ability to capture the exact extent of
fire. For this reason, image segmentation is adopted in this study, as it enables more
precise localization of fire boundaries and progression, which is essential for reliable
monitoring and timely response. Image segmentation is a common approach utilized across
diverse domains, including satellite and medical image analysis [6]. It plays a vital role in
tasks such as facial feature recognition |7, 8] and text recognition [9], highlighting its
versatility in computer vision and pattern recognition. Moreover, it can be used to
efficiently detect and track fires [10].

1.1 Contributions

A semantic segmentation model of fire based on an ensemble of deep neural

networks.



We propose a F2M model that combines the outputs of five state-of-the-art models to
produce more precise results for fire detection tasks. Following the evaluation of existing
segmentation models on the newly created dataset, we designed the F2M model to improve
performance and uncertainty estimation. This was achieved by using the Monte Carlo
dropout which led to improved performance compared to the individual segmentation
models.  Our method outperforms the best CNN and U-Net++, offering superior
segmentation results and reliability, and setting a new standard for fire detection systems.
This contribution is explained in more detail in Chapter 3 and has been published in a

journal paper [11].

A publicly available dataset of synthetic images for semantic fire segmentation
in industrial environments.

Despite advancements in model complexity and performance, a significant challenge in
developing deep learning models for fire detection remains the scarcity of high-quality
datasets. Most existing research has focused on outdoor fires, particularly wildfires, which
has led to the development of datasets primarily tailored to those scenarios. Research on
indoor fires has received limited attention, as datasets specifically designed for such
environments remain extremely scarce. In contrast to outdoor fires, where large-scale
image and video datasets are available, real-world indoor fire data are difficult to obtain
because incidents are infrequent, dangerous to document, and often take place in private or
restricted areas that limit accessibility and documentation. Consequently, synthetic and
simulated data have emerged as a practical alternative, made possible by recent advances
in graphics and simulation technologies. Building on this approach, we present the
SYN-FIRE dataset, the first synthetic dataset specifically developed to help detect indoor
fire in industrial environments. By making this resource publicly available, our work
directly addresses the longstanding scarcity of indoor fire data and establishes a foundation
for future research in this underrepresented domain. This contribution is further detailed

in Chapter 4 and has been published in a journal paper [5] and a conference paper [12].

Analysis of the impact of the ratio of synthetic to real data on the performance
of fire segmentation and detection models.

To further evaluate and expand on the previous contribution, the U-Net++ model was
trained using both real and synthetic datasets to evaluate the impact of synthetic data on the
performance of the trained model. Segmentation models were trained using publicly available
datasets of real fire images and the newly introduced SYN-FIRE dataset of synthetic fire
images. The results were obtained from a test subset of real datasets, using thresholds that
yielded the best performance on the validation subset. We conducted two distinct ablation
studies to analyze the impact of synthetic data on model performance. In the first ablation

study, we examined the influence of the correlation between synthetic and real data on model



performance by substituting a portion of real data with generated synthetic images. The

second ablation study evaluated the impact of integrating synthetic with real data on overall

model performance. The contribution is detailed in Chapter 4 and has been published in a

journal paper [5].
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1.3 Organization of the Thesis

This thesis focuses on fire detection and segmentation in indoor environments. It is
structured into five primary chapters. After the introduction, a background and related
work chapter reviews existing research. The subsequent chapters detail the principal
contributions, including the proposed methods and results. The concluding chapter

summarizes the findings and outlines potential directions for future research.

CHAPTER 2: BACKGROUND AND EXISTING APPROACHES TO FIRE
DETECTION

This chapter presents an overview of the background and current approaches used in
fire detection. The chapter starts with a description of fire characteristics and their
application in various detection systems, encompassing both sensor-based and image-based
methods. The chapter continues with a summary of traditional computer vision techniques

for detecting fire in images, followed by a discussion of deep learning methods that learn
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directly from visual data. It also outlines challenges in dataset creation, especially the
difficulty of collecting diverse and realistic fire examples. The chapter concludes with a
review of deep learning models for image segmentation, focusing on architectures

commonly used to locate fire regions in visual scenes.

CHAPTER 3: ENSEMBLE-BASED MODEL FOR INDOOR FIRE
DETECTION WITH UNCERTAINTY ESTIMATION

This chapter presents an ensemble-based model for indoor fire detection with
uncertainty estimation. We introduce the F2M model, which incorporates the fire
segmentation outputs from the five best-performing models identified through model
benchmarking that we previously conducted in that research. The F2M combines these
outputs to produce a single, more reliable segmentation mask and uses Monte Carlo
dropout to estimate prediction uncertainty. Although the improvements are relatively
small, the model exhibits slightly better performance than the strongest individual
baseline, U-Net++, across all three tested image resolutions. Evaluation is based on total
error, Dice Score, and IoU score. This approach aims to enhance model robustness and
provide uncertainty estimates that can support more informed decision-making in fire
detection systems. This chapter also discusses the design of the ensemble mechanism and

its role in improving segmentation consistency across varying image conditions.

CHAPTER 4: IMPACT OF SYNTHETIC DATA ON FIRE SEGMENTATION
MODELS

This chapter presents SYN-FIRE, the first synthetic dataset of indoor fires in industrial
environments, which includes pixel-level annotations and fire images generated with
NVIDIA Omniverse. Afterward, we evaluated the impact of integrating synthetic and real
data on the performance of fire segmentation models through benchmark evaluations of
publicly available fire datasets. Our findings emphasize the significant potential of
synthetic data in enhancing the performance of deep learning models, particularly in

scenarios with scarce real-world data like fire detection.

CHAPTER 5: CONCLUSION

The final chapter summarizes the main findings of the research and highlights the
contributions made in relation to the research objectives. It considers the significance of
the results within the broader field of fire detection research and outlines potential

directions for future research.



Background and Existing Approaches to Fire

Detection

This chapter provides an overview of existing fire detection approaches, with a focus on
methods relevant to fire detection in indoor environments. Fire represents a serious hazard
in densely populated urban areas, where incidents can result in significant property damage,
economic losses, and loss of human life. The rapid expansion of modern cities and the
increasing complexity of indoor spaces further amplify these risks, underscoring the need for
reliable and timely fire detection systems. Fire detection is a complex task that requires
an understanding of both the physical behavior of fire and the technologies used to detect
it. Conventional fire detection systems typically rely on smoke or heat sensors, which often
exhibit slow response times and provide limited spatial information. In contrast, image-
based methods enable earlier detection by identifying small or emerging flames and offer
richer information, including precise fire localization, severity estimation, and monitoring
fire propagation.

This chapter is structured as follows. Section 2.1 describes the fundamental
characteristics of fire, including flame, smoke, heat, and combustion gases, and discusses
their influence on fire detection strategies. Section 2.2 presents classical computer vision
methods for fire detection based on handcrafted features such as color, intensity, motion,
and region boundaries. Section 2.3 introduces deep learning approaches that learn features
directly from data and provide improved robustness and performance. Section 2.4 reviews
state-of-the-art convolutional neural network (CNN) architectures for fire segmentation.

Finally, Section 2.5 discusses challenges related to dataset creation and annotation, with



particular emphasis on the scarcity of indoor fire data and the dynamic nature of fire and

smoke.

2.1 Fundamentals of Fire Detection

Understanding the fundamentals of fire detection is crucial for ensuring an early warning and
an effective response to fire emergencies. This section examines the fundamental principles,
technologies, and system components that contribute to detecting fires and threats that can
lead to fire.

2.1.1 Physical Characteristics of Fire

Fire is a complex phenomenon composed of several key components: flame, heat, smoke,
and combustion gases. The visible flame and smoke are the most recognizable elements,
resulting from an exothermic chemical reaction between a fuel source and an oxidizer
(typically oxygen) [13]. A flame is a chemical reaction that generates a temperature of at
least 1500 K in general, and a maximum of 2500 K in air. From a physical perspective, fire
can be described as a complex flow field composed of interacting flames or flamelets [14].
In addition to flames, smoke forms as a byproduct of incomplete combustion and contains
a mixture of fine particulate matter (soot), water vapor, and toxic gases such as carbon
monoxide (CO), hydrogen cyanide (HCN), and volatile organic compounds (VOCs), all of
which depend on the burning materials and fire stage [15]. In indoor environments, such as
industrial setting, fire behavior differs significantly from open-air combustion. One of the
characteristics of fire is the development of a fire plume, a vertical column composed of hot
gases, combustion byproducts, and ambient air that rises from the flame [16]. The heat
release rate of the fire and the ambient ventilation determine the temperature, velocity, and
turbulence of the flame. A ceiling jet flame is specifically formed when a fire plume
expands laterally upon reaching the ceiling. This ceiling jet produces an intense heat
discharge from the ceiling, which can have a substantial impact on combustible materials in
the proximity. These effects have the potential to initiate secondary fires and inflict
damage on noncombustible materials [17]. In parallel, this process also leads to thermal
stratification, where hot gases accumulate near the ceiling, and cooler air remains below.
The stratified layers descend as the fire intensifies, causing a decrease in visibility and an
increase in toxicity for the occupants [13].

Spatial and thermal dynamics are essential for understanding the process by which fire
spreads indoors and for developing reliable detection systems. Fire exhibits not only physical
and thermal indicators but also distinct visual features that can be detected through image-
based methods. Although these systems can be challenging to implement, the visual nature of

fire provides useful context that supports effective detection. These include dynamic motion



patterns, irregular contours, flickering behavior, and color distributions typically within the
red, orange, and yellow spectrum [18, 19]. Fire and smoke can have different shapes, colors,
and levels of transparency, all of which may alter the area that is detected [19]. Flame color
varies significantly depending on the combustion efficiency, fuel type, and oxygen availability.
The color of a flame depends on several factors, including its temperature, the chemical
composition of the fuel, the presence of soot particles, and the amount of available oxygen
during combustion. Incomplete combustion often produces yellow, orange, or red flames due
to the incandescence of soot particles. In contrast, complete combustion in well-ventilated
conditions can result in blue flames, indicating higher temperatures and cleaner burning [13].
The structural composition of a flame and the corresponding temperature zones in a diffusion

flame are illustrated in Figure 2.1.
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Figure 2.1: The figure depicts flame stratification from the fuel-rich core through the reaction
zone (2000-2500 K), the continuous flame region (1500-2000 K) with incandescent soot
particles, to the pulsating intermittent tip.

The temporal flickering of flames, usually oscillating between 8 and 12 Hz, stems from
turbulent combustion and buoyant vortex shedding and can be used as a temporal
signature for fire [19]. Fire regions also tend to be highly luminous, with chaotic, non-rigid
shapes that vary from frame to frame, which helps differentiate them from static light

sources or fixed geometric objects. However, the visual features typically used to detect



fire, such as color and intensity variations, can also be produced by non-fire sources.
Common examples include vehicle headlights, sunlight reflections on shiny surfaces, or
colored lighting in indoor environments. These conditions can closely resemble flame-like
patterns in both color distribution and dynamic behavior, which often mislead computer
vision algorithms. This often results in false positive detections, which reduces the
reliability of computer vision models in real-world conditions where such visual distractions
are common.

Although these visual and physical characteristics are shared across environments,
significant differences exist between indoor and outdoor fires that affect both their behavior
and detectability. Detecting fire in indoor environments presents a unique set of challenges
due to the nature of enclosed spaces. Restricted airflow in such environments leads to the
rapid accumulation of smoke, and thermal stratification, all of which influence how heat
and combustion gases disperse throughout the space [13, 20]. These conditions reduce
visibility, increase toxicity for occupants, and may delay the activation of detection and
suppression systems [21]. Alongside these thermal effects, indoor visual fire detection
becomes more difficult due to environmental artifacts. Reflections from glossy materials
such as polished floors, windows, or metal surfaces can create flame-like visual patterns
that resemble the color and flickering motion of real fire [22]. Insufficient ventilation
increases smoke accumulation, which obscures flame contours and distorts critical features
required for accurate segmentation. Artificial light sources, such as incandescent bulbs,
LED indicators, or flickering monitors, often emit warm color tones and fluctuating
brightness levels that overlap with the visual appearance of flames, increasing the
likelihood of false positives [19]. In contrast, outdoor fires occur in open-air environments
where abundant oxygen and wind facilitate faster flame spread and more pronounced
convective behavior [23]. These fires generally lack the thermal layering observed indoors,
but their detection introduces a different set of visual complexities. Outdoor scenes are
affected by background clutter, natural occlusions such as vegetation, and highly variable
lighting conditions caused by sunlight, shadows, or atmospheric effects [22]. Hence, in
order to ensure the reliability of fire detection, image-based deep learning models must be
both adaptable to the contextual distinctions between indoor and outdoor environments

and resistant to mentioned domain-specific challenges.

2.1.2 Fire Detection Using Sensor-Based Methods

Traditional sensor-based fire detection methods, such as those relying on smoke, heat, or gas,
provide only limited capabilities [24]|. To trigger an alarm, a fire must burn long enough for
its byproducts to reach the sensor and exceed a predefined threshold. This unavoidable delay
is critical, as it allows the fire to escalate and spread rapidly, increasing the potential damage

and narrowing the window for effective intervention [25]. In contrast, image-based techniques
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can detect early visual cues of flames, enabling significantly faster reaction times and greater
reliability in hazardous environments. Fire development in indoor environments typically
progresses through four phases: incipient, growth, fully developed, and decay. These stages,
the detection methods suited to each stage, and the corresponding extent of damage over

time are illustrated in Figure 2.2.

INCIPIENT GROWTH FULLY DECAY
STAGE STAGE DEVELOPED STAGE

STAGE
Gas sensors Smoke sensors Flame sensors
GO-based sensors Flame sensors Infrared cameras
Heat sensors Heat sensors
RGB cameras RGB cameras Gas sensors

Smoke sensors
Infrared cameras
RGB cameras

& &

TIME

EXTENT OF DAMAGE

\ 4

Figure 2.2: A graph illustrating fire phases, damage amount over time, and potential
detection methods in each phase. Image source: Antunovic et al. [26].

In the incipient and growth stages of a fire, the primary focus must be on the rapid and
secure evacuation of all occupants, as protecting human life remains the most critical
objective throughout these early periods. Early detection of a structure fire is crucial for
safe evacuation and effective fire extinguishing [27]. Due to their limited coverage,
conventional sensors are often ineffective in large indoor areas or open environments [27].
These systems primarily rely on physical parameters like air temperature and smoke
concentration to identify fire presence. Despite widespread use, sensor-based fire detection
remains vulnerable to various environmental conditions. Factors such as installation height,
dust accumulation, and airflow can significantly affect sensor performance.  These
challenges may lead to false alarms, missed alerts, or delayed detection [11]. Due to these
delays, emergency response teams may be unable to respond in time to contain fires during
their initial phases. Furthermore, the reliability of fire alarm systems is often reduced by
the frequent occurrence of false alarms and the challenge of detecting fires in their early
stages, particularly when smoke or heat is not yet prominent. Figure 2.3 shows a summary

of traditional sensor-based detectors for fire detection.
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Figure 2.3: Classification of traditional and emerging sensor-based fire detection technologies
with corresponding detection mechanisms.

Flame Sensors

Heat transfer in combustion process primarily occurs via conduction, convection, and
radiation [28]. Due to the high temperatures, thermal radiation plays a significant role in
the spread and behavior of fire [13]. The fire itself is a powerful radiation source that
enhances heat transfer to adjacent materials, thereby accelerating flame development [29].
A flame is the visible aspect of fire, emerging from an exothermic reaction between a fuel
and an oxidant [30]. Its temperature depends on the specific combustible material involved.
Flame features two principal characteristics: color, indicating chromatic properties, and the
emission of radiation [27]. Flame detectors are advanced sensors that detect fire by
analyzing the radiation emitted during combustion. They distinguish the spectral signature
of flame radiation from other sources, such as hot surfaces, artificial light, or sunlight [29].
This spectral discrimination is essential for reducing false detections and ensuring accurate
flame recognition in diverse environments [29]. The main types of flame detectors are
Ultraviolet (UV), Infrared (IR), UV/IR, Multi-Spectrum Infrared (MSIR), and

Multispectral Flame Detectors.

Smoke Sensors

Smoke sensors are commonly used in fire detection, as they detect airborne particles produced
during the combustion process. The principal factors for smoke detection are smoke particle
concentration, volume fraction, and particle size distribution. Smoke detectors must be
able to detect combustion and smoke produced by burning flames, as there are significant

changes in the structure and content of smoke formed during these types of events [31].
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The type, volume, and density of smoke emitted during the fire development process vary
considerably depending on the fuel type and the oxygen supply. The peak concentration of
visible smoke usually occurs during the incipient and smoldering phases. The accuracy of
smoke measurement is closely related to the type of combustion, including pyrolysis, flaming,
and smoldering. Smoke sensors are typically divided into two main categories: photoelectric
and ionization. The choice of detection method is influenced by the fire’s characteristics
and the surrounding environment. Photoelectric sensors work based on the principle of light
scattering. A signal is initiated when smoke enters the chamber, disrupting the light beam
and causing the infrared light to fall below the receiver’s threshold. Photoelectric sensors are
generally more responsive to smoldering fires and offer quicker response times [27|. Ionization
sensors contain a radioactive source that ionizes the air inside the sensing chamber. They
react to both visible and invisible products of combustion. When smoke particles are present,
they interfere with the ionized particles, reducing the flow and triggering the alarm [32].
Ionization-type sensors are more effective at detecting flaming fires. Multimodal smoke
detectors combine smoke detection with supplementary sensing technologies to improve fire
detection accuracy. Using various sensors, these detectors can identify several fire-related
attributes, such as smoke, temperature, and toxic gases [33]. Multimodal detectors integrate
data from multiple sources to improve fire detection accuracy and reduce false alarms. This
approach aims for high sensitivity to smoke without compromising reliability, making it a

practical option for diverse environments [27].

Gas Sensors

Gases are released during each combustion stage, and their specific characteristics can be
leveraged for fire detection. This aspect becomes particularly critical in modern buildings,
where synthetic materials such as plastics, polymers, and foams have largely replaced
natural substances like wood and cotton [34]. The combustion of these synthetic materials
leads to a more rapid spread of fire and the emission of significantly higher quantities of
hazardous fumes and toxic gases, such as HCN and CO. Unlike natural materials, synthetic
furnishings, and insulation present greater risks due to the volume and toxicity of their
combustion byproducts [34]. Gas sensors are commonly employed to detect these gases
effectively, typically falling into two main categories: electrochemical sensors and metal
oxide semiconductor (MOS) sensors. Electrochemical gas sensors are highly effective for
detecting CO, HCN, nitrogen oxides, and VOCs due to their high specificity and
sensitivity. The use of advanced materials, including carbon nanostructures, noble metal
catalysts, and metal-organic frameworks, has enhanced performance by improving
sensitivity and decreasing response time [34]. MOS gas sensors are valued for their high
sensitivity and low cost. Their sensing mechanism is based on resistance changes that

occur when chemical reactions between target gases and oxygen ions adsorbed on the MOS
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surface take place [27].

Heat Detectors

Heat is a form of thermal energy that travels from hotter to cooler environments [31]. Fire
detection uses heat sensors and changes in ambient temperature to detect fire inside
environments. They are alternatives to the smoke detectors in environments where it is
normal to have smoke in the space due to working conditions (e.g., machine rooms, concert
rooms, steel mills, etc.). A heat sensor consists primarily of a signal conditioning circuit, an
amplification circuit, and a thermal element. The thermal element senses the temperature
corresponding to the resistance variation, refractive index, displacement, and other factors.
The heat sensor evaluates the indoor building temperature [35]. Based on their
functionality, heat sensors can be classified as fixed-temperature or rate-of-rise detectors.

A fixed-temperature heat detector is designed to trigger an alarm when the
temperature exceeds a predetermined threshold value. Various forms of fixed-temperature
sensors exist, including distributed fiber optics, fuse elements, and bimetals [27]. The
fuse-element heat detector is mainly used in the fire sprinkler system and operates at a
predetermined temperature level dependent on the melting of the heating element. They
are non-restoring detectors, as the fusible element requires replacement after
activation [31]. Bi-metal heat detectors function by the thermal expansion process of the
metals. In response to an increase in temperature, the bimetallic strip will flex toward the
metal with a low coefficient of thermal expansion [27]. When activated, the heat sensor
consistently detects a surrounding temperature exceeding its operational threshold. The
disparity between these two temperatures is referred to as thermal lag, which correlates
with the increase in temperature [31].

Distributed optical fiber heat sensing represents a promising and increasingly adopted
fire detection and thermal monitoring technology. Utilizing distributed temperature
sensing (DTS) principles, these systems employ passive fiber-optic cables to deliver precise
and continuous temperature measurements along their entire length [27]. This heat-sensing
method quantifies the heat along the fiber using the Raman effect. When an optical pulse
is sent through the fiber, part of the light is scattered and reflected back to the source. The
system determines temperature changes along the cable by analyzing the backscattered
signal. The intensity of Raman scattering is directly correlated with temperature, allowing
for the precise measurement of heat distribution over large distances. This approach has
proven effective in identifying abnormal heat patterns and enabling early fire detection. As
a reliable and scalable solution, distributed optical fiber heat sensing is gaining recognition
for its effectiveness in fire prevention and safety-critical environments [36]. Distributed
optical fiber static heat sensing is widely applied in fire detection across complex and

high-risk environments such as tunnels, industrial facilities, electrical substations, and
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conveyor systems, where continuous and accurate temperature monitoring is essential for
early fire detection.

Bi-metal heat sensors operate through thermal expansion, utilizing two metals with
different expansion coefficients that combine together. As the temperature increases, the
strip curves toward the metal with the lower thermal expansion coefficient. The heat from
the surrounding flames induces a bending motion that completes an electrical circuit,
activating an alarm. The distance between contacts dictates the activation temperature.
Common types include the bimetal strip and the bimetal snap disk.

Rate-of-rise heat detectors monitor the ambient temperature and the speed at which
it increases over time. These sensors typically activate when the temperature rises rapidly,
often between 12 and 15 degrees Fahrenheit per minute [31]. They are designed to ignore slow
or minor fluctuations unless those persist for an extended period. However, their extreme
sensitivity to quick environmental changes makes them prone to false alarms. As a result,

they are rarely used in fire suppression systems that require reliability and precision [31].

Graphene Oxide Based Detectors

Graphene oxide (GO)-based fire detectors have been investigated as experimental
fire-sensing technologies that take advantage of GO’s thermal, electrical, and chemical
reactivity [37, 38]. GO is a graphite derivative composed of single-layer carbon sheets
decorated with oxygen-containing functional groups, which make it disolvable in water and
easy to process [39]. These oxygen groups impart hydrophilicity and chemical activity, but
they also render GO electrically insulating and thermally unstable compared to the pristine
graphene [40].  Although these traits have inspired research into advanced sensing
concepts [38], they also introduce reliability challenges under real-world conditions.
GO-based fire detectors typically operate through thermally induced reduction: heating
breaks down oxygen functional groups, partially restoring the conjugated carbon structure
and increasing conductivity [39, 41]. The resulting drop in resistance can be used as a
detection signal, and in some cases, films exhibit color changes that serve as potential
visual indicators [42]. However, these responses are strongly dependent on the stability of
GO’s surface chemistry, which tends to degrade over time. Because GO contains abundant
oxygen groups, it has also been explored as a gas-sensitive material. In principle,
physisorption or chemisorption of combustion-related gases (NHs, NO,, CO) can alter
their electrical resistance [34, 43-45]. Yet in practice, this approach suffers from limited
selectivity, strong cross-sensitivity, and signal drift, particularly in humid or oxygen-rich
environments [46]. Even under controlled conditions, prolonged exposure to ambient air
leads to a gradual loss of functional groups and a decline in sensing performance [47].
Overall, while GO offers interesting chemical reactivity for proof-of-concept studies, its

susceptibility to humidity, instability in ambient air, and degradation over time hinder its

15



suitability for robust fire safety systems. These limitations highlight the need for
alternative strategies, such as image-based fire detection, which avoid the material

instability issues inherent to chemical sensing approaches.

Limits of Sensor-Based Fire Detection

Sensor-based fire detection systems, including smoke, heat, and gas detectors, have long
been the cornerstone of traditional fire safety infrastructure. Although widely used, these
systems face key limitations that can reduce their reliability under real-world conditions.
Traditional sensor-based technology typically relies on physical indicators, such as smoke
concentration and air temperature, to detect the presence of fire. However, temperature and
smoke detectors may be influenced by external conditions, including the height at which they
are installed, the presence of dust, and the airflow speed [11]. When alarms are delayed,
fire services may be unable to suppress the initial phase of fire promptly and effectively [48].
Since fires can escalate rapidly within just a few minutes, even short delays in detection
significantly reduce the chances of controlling the fire at its earliest stage. Sensor response
times are often delayed in the early stages of fire development when heat, gases, or smoke
remain minimal or have yet to reach the detection point [49]. This delay becomes more severe
in large or ventilated areas, where heat and smoke may disperse before reaching detectable
levels [49]. Another significant limitation is the tendency of these systems to trigger false
alarms, which commonly occur due to non-fire elements such as cooking emissions, steam
vapors, or airborne dust [49]. In addition to limited sensitivity and specificity, sensor-based
systems usually generate only binary outputs and lack spatial data on the fire’s location or
size [50]. This absence of localization makes emergency response more difficult and limits the
ability of automated systems to operate in a targeted way. Moreover, in large or structurally
complex indoor areas, sensor placement might not ensure complete coverage. Fires that
start distant from the sensors may remain undetected during critical periods, reducing the
system’s overall reliability. Due to these limitations, there is growing interest in image-based
methods that offer faster detection, enhanced spatial awareness, and greater resilience in

dynamic environments.

2.1.3 Fire Detection Using Image-Based Methods

Image-based methods provide significant advantages compared to traditional sensor-based
fire detection systems. In contrast to sensors, which typically require substantial fire
development to trigger, image-based approaches can detect even small flames or early
smoke [11]. Fire detection at early stages improves reaction times and lowers the risk of fire
spread [11]. Additionally, visual information from cameras provides rich contextual
information, allowing systems not only to identify the presence of fire but also to estimate

its location, size, and progression over time. Such spatial and temporal awareness is crucial
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for enhancing situational understanding and guiding emergency response efforts more
effectively [4].  Traditional image-based detection systems employ image-processing
techniques that rely on attributes that describe fire on the image, but the state-of-the-art
approaches use deep-learning methods. In addition, image segmentation has proven
effective in detecting and tracking fire events [10]. The goal of fire semantic segmentation is
to classify each pixel as fire or non-fire. This task, along with salient object detection and
general semantic segmentation, has greatly benefited from advancements in image
processing [51]. Nevertheless, challenges remain due to varying backgrounds, different fire
scales at multiple stages, and interference from visually similar objects [52]. The following
section discusses traditional fire detection approaches based on image processing

algorithms for image segmentation, which are most relevant to the objectives of this thesis.

Advantages and Challenges of Image-Based Fire Detection

Image-based fire detection has significant advantages over traditional sensor-based systems.
These image-based systems identify fire by directly analyzing image data from camera feeds,
unlike traditional sensor-based detectors that depend on the accumulation of combustion
byproducts. This enables faster reaction times, particularly during the smoldering phases of
fire development when heat and smoke are still scarce. Another substantial advantage is the
capacity to specify the fire’s location within the scene. The spatial information is critical for
emergency response and supports targeted activation of alarms or suppression systems inside
complex environments [11]. Image-based systems can also estimate the size and spread of the
fire and provide contextual information about the surrounding environment, including the
presence of people, obstacles, or nearby hazards [11]. Such capabilities enhance situational
awareness and can be integrated into autonomous platforms or decision support systems [53].

Despite their potential, image-based fire detection systems face several significant
challenges in real-world environments. One major issue is the presence of reflections from
glossy surfaces such as glass, polished floors, or metal, which can create flame-like visual
patterns and result in false alarms [19]. As mentioned before, artificial light sources,
including incandescent bulbs, LEDs, and monitors, often emit warm hues and fluctuating
brightness that closely resemble the appearance and motion of actual fire [19], posing a
significant challenge in image-based fire detection. In addition, objects with similar color or
texture to flames, such as orange clothing or flickering decorative lights, can confuse the
detection model, particularly in rule-based or poorly generalized systems [19]|. Visibility
can also be significantly reduced by environmental factors such as smoke, fog, or steam.
These elements obscure flame contours and reduce contrast, making it difficult for the
system to extract reliable visual features [54]. These limitations motivated early efforts to
use traditional computer vision techniques such as color thresholding, motion detection,

and rule-based filtering, which laid the foundation for more robust learning-based methods.
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2.2 'Traditional Computer Vision Techniques for Fire

Detection

Traditional fire detection methods in computer vision rely on handcrafted features and rule-
based algorithms that focus on visual properties such as color, shape, motion, and texture.
While simple and computationally inexpensive, these approaches struggle to generalize under
real-world conditions, where variations in lighting, smoke, or environment can cause false
alarms. Because the features are manually designed, they lack adaptability and must be re-
engineered for each new environment or dataset. As a result, their performance often plateaus
on complex detection tasks, making them less robust and scalable compared to modern
deep learning—based approaches that can automatically learn richer and more transferable

representations.

2.2.1 Color-Based Thresholding

One of the earliest and most commonly used methods in traditional fire detection is color-
based thresholding. This approach is based on the idea that fire has a distinctive appearance
in images, often appearing in shades of red, orange, and yellow colors. By setting fixed
boundaries within a chosen color space, the system can recognize these characteristic colors.
For example, pixel values can be analyzed in the RGB, HSV, or YCbCr space, and those that
fall within the known range for fire are marked as potential fire pixels. HSV is frequently used
because it separates brightness from color, which allows better handling of changes in lighting
conditions. Large areas of the image that resemble fire can be rapidly identified by employing
logical principles on individual pixels. The low computational cost of this technique is one of
its advantages. It is suitable for real-time applications and devices with limited processing
power, as it does not require complex models or training data. It can also be utilized to
detect the presence of fire in video feeds by applying color thresholds to each frame. Adaptive
thresholding has been implemented in certain studies to enhance effectiveness in dynamic
lighting environments. The boundaries can be adjusted by this adaptation based on the
average color values of the scene or by utilizing statistical models to minimize false detections.
However, the majority of implementations still depend on static principles, which limits
their ability to generalize across a diverse range of environments. Color-based thresholding
is subject to substantial constraints despite its apparent simplicity. It is extremely sensitive
to the presence of other objects that show similar colors to fire, ambient illumination, and
camera quality. Reflections, bright clothing, and artificial lights can often produce false
positives. Moreover, fire in its early stages or smoke-heavy environments may not emit
strong light, and the color contrast may be weak. In such cases, the method may fail to
detect the event completely. Because thresholding considers each pixel independently, it

does not utilize the spatial or temporal structure of the flame. As a result, it may identify
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isolated pixels or disconnected regions, reducing the overall accuracy of fire localization. To
address these challenges, color thresholding is often combined with other features such as
motion, texture, or shape. Motion detection can help filter out static objects that share the
same color range, while texture features can highlight the flickering nature of flames. In
modern systems, thresholding may be used as a pre-processing step before more complex
analysis is performed. This multi-step approach can improve reliability while maintaining
low computational requirements. Overall, color-based thresholding remains a useful method
for basic fire detection tasks, especially in controlled indoor environments or as an initial filter

in larger systems. Figure 2.4 visualizes fire segmentation using color-based thresholding.

Figure 2.4: The visualization of using color-based thresholding to segment fire. Image
source: Celik et al. [18].

Color thresholding has been applied in a wide range of fire detection research. Chen et
al. [55] proposed an early fire-alarm method using video processing that extracts fire and
smoke pixels based on RGB chromatic analysis and disorder measurement, with fire detection
verified through flame growth dynamics and smoke presence. The method achieved fully
automatic surveillance with low false alarm rates. Toreyin et al. [56] proposed combining
color and flicker analysis to reduce false alarms in fire detection from video. The authors
utilized spatial wavelet transforms to monitor the decrease in high-frequency energy and

chrominance values caused by semi-transparent smoke while employing a Hidden Markov
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Model to capture the temporal flicker behavior of smoke regions. The proposed method
effectively combines edge analysis, background comparison, and flicker modeling, showing
promising results for both real-time and offline smoke detection in video surveillance systems.
Celik et al. [18] developed a real-time method using YCbCr color space and pixel intensity
models. The authors proposed a fire detection approach that combines adaptive background
subtraction with a statistical fire color model, where each color channel is modeled using
Gaussian distributions. Foreground objects are first extracted and then verified using fire
color statistics derived from sample images, enabling accurate identification of fire candidates
in video frames. The system showed high efficiency and accuracy in real-time fire detection,

operating smoothly on low-resolution video.

2.2.2 K-Means Clustering

K-Means clustering is an unsupervised image segmentation method that groups pixels based
on similarity in color or intensity [57]. The algorithm begins by selecting a predefined number
of clusters. It then assigns each pixel to the cluster whose center is closest in terms of feature
values, typically based on color channels. After all pixels are assigned, the centers of the
clusters are updated based on the average values of their assigned members. This process
repeats until the assignments no longer change significantly [58]. A key advantage of this
method is that it does not require labeled training data. This makes K-Means suitable for
exploratory analysis or use in settings where annotated fire datasets are limited. It can
adapt to various visual scenes and identify potential fire regions, even when the flame shape
is irregular or partially obstructed. Additionally, K-Means can serve as a pre-processing step
within larger fire detection systems. For example, once flame-colored clusters are identified,
other components of the system can further analyze those regions to confirm whether fire
is truly present. Despite its simplicity, K-Means clustering has significant limitations. The
algorithm requires specifying the number of clusters beforehand, which can be difficult when
dealing with scenes that vary in complexity [57|. If too few clusters are chosen, different
areas, such as fire and background, may be grouped. If too many clusters are selected,
the image may be broken into segments that are too detailed, making interpretation more
difficult [58]. Additionally, K-Means begins with randomly selected centers, and this initial
randomness may yield inconsistent results across different runs [57]. Because of this, the
algorithm may need to be executed several times to produce consistent results. A further
limitation is that K-Means relies only on basic visual features such as brightness and color.
It does not utilize spatial or semantic information, which may lead to the misclassification
of non-fire objects that resemble flames in appearance. This issue becomes more noticeable
in scenes containing reflective surfaces, bright lighting, or objects with warm-toned colors.
To improve reliability, K-Means is often combined with additional techniques, such as color

thresholding, motion analysis, or contour-based filtering. These complementary steps help
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distinguish actual flames from other visually similar regions. This method is a useful tool
for segmenting images in traditional fire detection systems. While it has limitations in terms
of accuracy and stability, it offers a fast and adaptable method for identifying candidate fire
regions. When integrated with other algorithms, it contributes to more robust and flexible

detection pipelines.

Figure 2.5: The visualization of using K-Means clustering to segment fire. Image source:
Rudz et al. [59].

In the context of fire detection, this technique has been utilized to segment flame-like
regions from background elements in visual data for fire detection tasks [60]. By grouping
pixels based on color similarity, this unsupervised technique effectively isolates areas that
share visual characteristics with those of a fire. Figure 2.5 illustrates utilizing K-Means
clustering to segment fire on RGB images. Typically, one or more resulting clusters exhibit
flame-like hues, enabling the identification of potential fire regions within an image or video
frame. Anitha et al. [61] utilized K-Means clustering to identify forest fires by using land
surface temperature. The authors utilized satellite imagery to determine the mean
wavelengths of abnormal temperature distributions in a small region compared to their
surroundings. Rudz et al. [59] proposed a two-step image segmentation algorithm for forest

fire detection, combining optimized K-Means clustering on the blue chrominance (Cb)
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channel of the YCbCr color space with a filtering process based on local histogram
comparison using reference fire data. The method demonstrated superior performance over
existing approaches available at the time when evaluated through three supervised criteria,

highlighting its accuracy in isolating true fire pixels while minimizing false detections.

2.2.3 Watershed Segmentation

The watershed algorithm is an image processing technique that interprets a grayscale image
as a topographic surface. In this representation, the intensity values of pixels correspond to
the elevation levels. Darker regions mark basins (valleys), while brighter regions represent
ridges or peaks. The algorithm simulates a flooding process starting from local minima,
and regions expand until they meet at ridges, which form the boundaries of segmented
regions [62]. This natural analogy allows the method to produce closed contours around

objects in a way that respects intensity gradients and local structure [63].

Figure 2.6: The visualization of using the Watershed algorithm to segment fire.

This method is especially effective for separating connected regions that have gradual
transitions between them. However, it is also known to be sensitive to image noise and
variations in fine texture. These small fluctuations can cause the algorithm to produce a
large number of small and irrelevant segments, a problem known as over-segmentation. To
mitigate this problem, gradient pre-processing is often implemented to accentuate
significant edges while reducing noise. Figure 2.6 illustrates utilizing Watershed algorithm
to segment fire on RGB images. Furthermore, variants of the algorithm based on markers
have been developed. These versions include predefined foreground and background regions
that direct the flooding process, helping the algorithm focus on significant regions.
Watershed segmentation can extract fine boundary details and handle touching or
overlapping objects, which makes it useful for detecting objects with unclear or diffuse
edges [63]. This is particularly important in fire imagery, where flames often exhibit

irregular, blurred, or rapidly changing boundaries. The flames may blend into the
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surrounding scene due to variations in brightness or smoke interference, and the spatial
contrast between the flame and background may not be sharp. In such cases, the
watershed algorithm can accurately trace flame shapes when guided by appropriate
markers and gradient information. In fire detection systems, watershed segmentation is
typically integrated as a post-processing step to refine regions identified by earlier methods
such as color thresholding or motion analysis. After coarse flame areas are located, the
watershed algorithm provides precise region boundaries that better match the true extent
of the fire. This boundary information can then be used to calculate geometric features,
estimate the spread of the flame, or filter out false detections caused by bright but non-fire
regions. As such, watershed segmentation contributes to improved spatial accuracy and
robustness in fire detection pipelines, especially in indoor or industrial environments where

background clutter and lighting variability are common.

2.2.4 Contour Detection

Contour detection is a traditional method in computer vision that identifies the outlines
or boundaries of objects in an image. A contour is formed by a set of continuous points
that have the same intensity or follow a strong edge [64]. The most common approach to
finding contours is first to apply an edge detection algorithm, such as the Canny or Sobel
detector. These detectors compute changes in pixel intensity across the image and highlight
areas where those changes are strong [65]. Once the edges are extracted, the contours
can be traced by connecting neighboring edge pixels. Contour detection allows the system
to understand the shape and structure of objects based on their boundaries. One of the
benefits of contour detection is that it focuses on geometric features instead of color or
texture. This makes it a valuable addition to other methods, especially in situations where
color information may be misleading. Contour-based methods can help identify moving or
irregular shapes in the image. They also enable the use of shape descriptors, such as area,
aspect ratio, or circularity, to describe objects. These measurements can then be used to filter
out unwanted objects or to classify regions based on known shape patterns. For example,
small closed contours can be removed as noise, and large irregular shapes can be flagged as
more relevant. Contour methods are preferable for detecting changes in the form of flames
in the context of fire detection. Frequently, fire shows non-rigid and shimmering patterns
that change over time. The dynamic contours generated by evolving patterns aid in flame
recognition in images. When used in conjunction with motion or color cues, contour detection
enhances system reliability by verifying that detected areas are not only bright or warm-
colored but also exhibit shapes that reflect typical fire behavior [66]. For instance, extended
and wavy contours with fast boundary changes could indicate active flames, but circular
and steady contours may imply a false detection from a bright source. Nonetheless, contour

detection has certain drawbacks when applied on its own. In environments with textured
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backgrounds, lighting shifts, or strong shadows, edge detectors may produce broken or noisy
contours. This may result in a decrease in the accuracy of flame boundary detection [65].
Furthermore, contours solely define the object outline, not its interior. Consequently, to
evaluate the entire region, these methods must be implemented in conjunction with other
approaches. To improve the accuracy of region detection and reduce the number of false
alarms, contour features are often utilized during the segmentation or refinement phases of
fire detection applications. By integrating contour data with motion, texture, or color-based
features, fire detection systems can achieve greater accuracy and robustness, especially in
complex or indoor scenes. Figure 2.7 visualizes utilization of Contour Detection to detect

fire in images.

Figure 2.7: The visualization of Contour Detection use to detect fire on images. Image
source: Zhang et al. [67].

Several studies have explored the role of contour detection in fire detection. Celik et
al. [18] improved the detection performance of surveillance videos by utilizing both shape
and color to filter out non-fire areas. Building upon this concept, the paper suggests a
real-time fire detection system that combines a statistical fire color model with adaptive
background subtraction to identify fire regions in video sequences. The approach is effective
for early fire detection in dynamic environments due to its high accuracy and efficiency, which
are achieved by modeling background pixels with Gaussian distributions and verifying the
closest objects against fire color characteristics. In order to detect and observe flame shapes
in real time, Toreyin et al. [66] implemented contour tracking in conjunction with flicker
information. The paper introduces a real-time fire detection method that utilizes both
spatial and temporal wavelet transforms to capture flame flickering, color variation, and
boundary irregularities, which expands upon this approach. The method effectively reduces
false alarms and improves detection performance in both surveillance and video analysis
scenarios by incorporating these features with traditional motion and color signals. Zhang

et al. [67] combined contour and frequency analysis for outdoor forest fire detection and
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achieved improved boundary accuracy. In a similar direction, the paper presents a method
that first extracts fire contours and represents them using the Fast Fourier Transform, then
applies temporal wavelet analysis to capture their dynamic changes over time, resulting in
more accurate detection of frames containing fire, especially during the growth and fully

developed stages.

2.3 Deep Learning in Visual Fire Detection

Deep learning, a subset of machine learning, employs computational models with multiple
processing layers to learn hierarchical representations of data. These models are designed
to mimic the ability of the human brain to acquire and interpret information from various
sources, thereby implicitly recognize complex patterns within large datasets [68]. Deep
learning has significantly advanced the field of computer vision, particularly through the
application of CNNs, which are capable of learning hierarchical features directly from image
data [69]. Unlike traditional computer vision techniques that rely on manually created
features, such as specific color ranges or edge outlines, CNNs learn to identify important
patterns at various levels of complexity. This ability to learn enables these models to perform
well even with varying visual inputs, which has significantly improved tasks such as image
classification, object detection, and semantic segmentation [70]. Deep learning methods
in computer vision are typically categorized into three main tasks: classification, object

detection, and image segmentation.

2.3.1 Image Classification

Image classification is a fundamental task in computer vision that deals with automatically
understanding the content of an image. In this process, machine learning models are trained
to categorize images into predefined classes. By learning to recognize patterns within input
data, these models can assign a single or multiple labels to an image, indicating the presence
of a particular object or event in a way that resembles human interpretation. Various types
of image classification methods and techniques are used depending on the complexity of
the task and the nature of the images. These methods are usually grouped by labeling
scheme and by learning approach. In terms of labeling, a task may involve: single-label
or multi-label classification. In single-label classification, each image is assigned to exactly
one class. In multi-label classification, an image can belong to multiple classes at the same
time. From the learning perspective, classification can be supervised, unsupervised, or semi-
supervised. Supervised methods rely on annotated data. Unsupervised methods group
images by similarity without predefined categories. Semi-supervised methods combine a
small labeled dataset with a larger pool of unlabeled examples. Figure 2.8 illustrates how

image classification techniques can be applied to detect fire in real time, enabling rapid
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response and minimizing potential damage.
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Figure 2.8: Application of image classification for fire detection, demonstrating the process
of analyzing visual input to identify the presence of flames or smoke.

In practice, image classification has often been applied to the problem of fire detection,
where the goal is to decide whether flames appear in a scene [71]|. Several earlier studies
have adopted this strategy for identifying fire in images [72-74], and they demonstrate that
classification models can successfully determine if a fire is present. However, this type of
approach provides only information on whether fire is visible in the image and does not
reveal its location within the image. Because of that limitation, classification alone is not
a practical choice when the objective is to suppress the fire, since spatial information is

necessary to guide any intervention.

2.3.2 Object Detection

In image analysis, classification assigns a category to an object but does not specify its
position within the frame. Localization advances this task by identifying not only the
object category, but also its approximate location, most often represented with a bounding
box [75]. The accuracy of such bounding boxes can differ depending on the employed
method. Object detection builds upon these foundations by enabling the simultaneous
recognition and localization of multiple objects in the same image, with each instance
enclosed by a bounding box [76]. Figure 2.9 shows the application of Object Detection for
fire detection in images.

This technique has become essential across a wide range of applications, including medical
image analysis, pedestrian tracking, facial recognition, and fire detection. Recent research
has explored the use of object detection models, such as YOLO and Faster R-CNN, for fire
recognition in images and video streams [77-80|. These methods demonstrate that detection
models can not only confirm the presence of fire but also localize it, enabling more effective
monitoring and early warning systems. Despite its broad utility, object detection remains

challenged by image variations such as changes in scale, viewpoint, and lighting.
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Figure 2.9: Visualization of object detection showing the detection and localization of fire
within images.

2.3.3 Image Segmentation

Image segmentation in deep learning refers to the process of dividing an image or video frame
into multiple meaningful regions, such as objects or boundaries. This division allows for more
effective analysis and interpretation of visual data |76, 81|. Unlike image classification, which
assigns a single label to an entire image, or object detection, which identifies locations by
using bounding boxes, image segmentation provides pixel-level predictions where each pixel
is assigned a specific class. This fine-grained approach enables a deeper understanding of
visual content. Image segmentation can be categorized into different types, each capturing

a distinct level of detail in scene interpretation.

1. Semantic segmentation assigns a class label to every pixel in an image. If multiple
objects from the image are assigned the same pixel-level class no distinction is made
between separate object instances. This method is particularly relevant in tasks such as
fire detection or medical image interpretation, where the overall distribution of classes

is the primary focus.

2. Instance segmentation builds upon semantic segmentation by distinguishing
between individual objects of the same category. Each occurrence of an object is
separately identified and segmented. This capability is crucial in applications such as
counting vehicles in urban environments or identifying multiple pathological regions

in medical scans.

3. Panoptic segmentation integrates the principles of semantic and instance
segmentation. It assigns class labels to all pixels while also providing unique
identifiers for each object instance. This combined approach enables a more complete
understanding of complex scenes by capturing both object-level detail and contextual

information.
Image segmentation provides a more detailed representation of visual data than image
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classification or object detection. It not only identifies the presence of objects but also
delineates their precise shapes and spatial boundaries. This pixel-level understanding
allows for accurate analysis in complex scenes where objects may overlap or display
irregular structures. Such precision is crucial in domains that demand reliable
interpretation, including medical imaging, autonomous driving, and fire detection. In the
context of fire detection, segmentation has become particularly important for improving
monitoring and safety. While object detection methods such as YOLO or Faster R-CNN
can confirm the presence of fire and indicate its approximate location through bounding
boxes, segmentation produces fine-grained masks that capture the exact extent of fire
regions. This boundary information is essential for estimating the spread, intensity, and
area affected, which directly supports more accurate risk assessment and timely response.
Recent studies have employed segmentation models for analyzing fire in both images and
video streams [11, 82, 83]. These studies demonstrate that segmentation provides spatial
detail that object detection methods cannot fully capture, leading to a more complete
understanding of fire behavior. Building on these advances, deep learning has become the
dominant approach in image analysis, as it consistently outperforms conventional
rule-based techniques that struggle with the variability and complexity of real-world
conditions [84]. Figure 2.10 shows the application of Image Segmentation for segmenting

fire in images.

Figure 2.10: Visualization of image segmentation used to segment fire regions within images.

In visual fire detection, deep learning offers a robust approach for capturing the spatial
structures and intensity changes typical of flames and smoke. While classification can suffice
for triggering alerts, adding detection and segmentation provides precise localization, which
improves risk assessment, assists emergency response, and supports automated suppression
systems. These models also generalize well across various scenarios and camera angles,
which is especially valuable in dynamic settings such as industrial sites, public spaces, and

surveillance systems.
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2.3.4 Applications of Deep Learning in Fire Detection

Sharma et al. [85] explored fire detection by adding a fully connected layer to well-known
VGG16 and ResNet50 models. Dunnings i Breckon [86] used super-pixels along with
Inceptionvl, AlexNet, and VGG16 to detect fire without using temporal information from
the scene. The complexity of CNNs was reduced by keeping only a few convolutional,
pooling, and dense layers. To detect fire, Xie et al. [87] used static features and dynamic
motion flicker information. Hou et al. [88] proposed an improved DeepLabv3-+ model that
accurately segments flames and smoke in indoor settings. The integration of atrous
convolutions into the network enhanced segmentation quality across various image
resolutions. In Mseddi et al. [89] a method integrating YOLOv5 and U-Net for fire
detection was proposed. This method employs YOLOv5 to detect and extract the
bounding boxes that contain fire, while U-Net is utilized to segment the fire areas within
those bounding boxes. Likewise, Kim i Lee [90] utilized Faster R-CNN to identify potential
fire locations based on spatial features and employed a Long Short-Term Memory (LSTM)
network to analyze fire dynamics. A known limitation of CNN-based methods is their
reduced ability to detect small fire regions, which is attributed to the fixed size of their
receptive fields. To address this issue, recent work in fire detection includes attention
mechanisms that help preserve localized features. Niknejad i Bernardino [91] proposed a
spatial self-attention approach to capture long-range pixel dependencies, along with a novel
channel attention module that uses classification probabilities as attention weights. Shahid
et al. [4] developed a spatiotemporal self-attention model for fire detection and
segmentation. Their method uses self-attention to enhance spatial and temporal features,
reducing reliance on shape or size, and improving performance through stronger

spatial-temporal connections.

2.4 CNN Architectures for Image Segmentation

Numerous researchers have investigated the use of various algorithms for fire detection,
leveraging recent advancements in artificial intelligence. Many of them have implemented
CNNs to address challenges in fire detection and segmentation.  Although various
architectures are available for image segmentation, this section focuses on the most

influential CNN architectures used in our research.

2.4.1 Feature Pyramid Network (FPN)

Feature pyramids are a fundamental component in recognition systems for detecting
objects at different scales, but they are often avoided because they are computationally-
and memory-intensive [92]. The Feature Pyramid Network [92] is an efficient feature

extractor that upgrades pyramid networks with effective multi-scale feature representation.
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The FPNs generate correspondingly scaled feature maps at different levels in a fully
convolutional manner by utilizing an image of arbitrary size as input. Although initially
developed for object detection, FPNs have been effectively applied to a variety of tasks,
including instance segmentation, semantic segmentation, keypoint estimation, and even
depth prediction and panoptic segmentation. Due to their capacity to provide robust

semantics across all spatial resolutions, they are a highly adaptable backbone module.
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Figure 2.11: The structure of FPN architecture. Image source: Lin et al. [92].

FPN employs a top-down pathway with lateral connections to integrate semantically
rich features extracted from deeper network layers with high-resolution spatial details. The
top-down pathway generates higher-resolution features by upsampling spatially coarser but
semantically richer feature maps from the upper layers of the pyramid. The upsampled
features are enhanced via lateral connections that combine information from the
bottom-up pathway. Each lateral connection integrates feature maps with corresponding
spatial dimensions from both paths. Although the bottom-up feature maps underwent
fewer subsampling steps, their activations are more precisely localized despite the fact that
they contain lower-level semantic information. The network architecture is illustrated in
Figure 2.11. This hierarchical structure enables the network to effectively capture both
fine-grained details and high-level contextual information, thereby enhancing segmentation
performance across objects of varying sizes. FPN enhances the robustness of segmentation
models by extracting multi-scale features, particularly in complex environments
characterized by occlusions and intricate backgrounds.

FPNs offer several significant benefits in multi-scale vision tasks. They obviate the need
for traditional image pyramids by deriving all scales from a single backbone, and their
lightweight additional layers impose only modest parameters and computational overhead,
preserving real-time inference capability. The modularity of the top-down and lateral
design allows for seamless integration with diverse pretrained model backbones, and
attaching task-specific model heads at each scale ensures that small objects utilize
high-resolution maps while large objects draw on semantically richer, lower-resolution
features. Nevertheless, FPN also involves certain drawbacks. Retaining intermediate
feature maps from every backbone stage can substantially increase memory consumption

when processing very deep architectures or high-resolution inputs. The wuse of
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nearest-neighbor interpolation may introduce minor misalignment between fused features,
which can degrade localization accuracy. Additionally, fixed channel dimensions across all
pyramid levels may not be optimal for every application, prompting later work to explore
adaptive fusion weights or dynamic scaling. Finally, the two-stage fusion pattern of the
original FPN may be less expressive than more elaborate bidirectional or densely connected

schemes in capturing complex cross-scale interactions.

2.4.2 U-Net

U-Net [93] is an image segmentation network characterized by its U-shaped architecture
depicting its encoder and decoder branches. The encoder extracts spatial and semantic
features, while a decoder reconstructs a segmentation map from the encoded information.
The network is symmetrical, where each encoder layer is connected to a corresponding
decoder layer with a corresponding skip connection. These connections allow the decoder
to access fine-grained spatial details from earlier layers, improving the accuracy of
boundary localization and the representation of object structures. Also, because U-Net

does not include any dense layers, it can process input images of arbitrary size.
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Figure 2.12: The structure of U-Net architecture. Image source: Ronneberger et al. |93].

The encoder path utilizes convolutional layers followed by max-pooling operations to
reduce spatial dimensions and extract hierarchical feature representations. The decoder
path progressively upscales the feature maps using transposed convolutions, restoring them

to the original resolution of the input image. Each stage of upsampling is followed by
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convolutional layers that refine the output of the segmentation. Convolutions and max-
pooling are essential in the encoder for learning complex patterns and compressing spatial
information, while transposed convolutions in the decoder ensure accurate reconstruction
of spatial structures. The use of skip connections between encoder and decoder layers is
crucial, as it enables the transfer of localization information that may otherwise be lost
during downsampling. The U-Net architecture is visualized in Figure 2.12. U-Net offers
multiple benefits for image segmentation tasks. Integrating high-level semantic features with
low-level spatial information enables accurate segmentation, especially in applications that
require precise boundary delineation. The architecture is efficient in terms of computation
and performs well, even with limited datasets, due to its ability to learn from augmented
data. Despite these strengths, U-Net also has certain limitations. The memory requirements
can be high, especially for large input images, due to the need to store multiple intermediate
feature maps. Additionally, the fixed receptive field of standard convolutions may limit the
network’s ability to capture long-range dependencies. Furthermore, skip connections can
transmit irrelevant textures or noise, which may negatively affect the final segmentation
output. To address these challenges, later variants have introduced attention mechanisms

and atrous convolutions to improve feature selection and expand the receptive field.

2.4.3 U-Net-+-+

U-Net++ [94] is an extension of the U-Net neural network aimed at enhancing feature
propagation and segmentation accuracy by incorporating nested and dense skip
connections. While U-Net uses simple skip connections between corresponding encoder and
decoder layers, U-Net+-+ introduces additional convolution blocks between these
connections. These form nested pathways that allow features to pass through multiple
intermediate steps before reaching the decoder. As a result, each decoder layer receives
features from several encoder stages, which improves feature reuse and helps combine
information at different levels of detail. The architecture of U-Net++- still follows the same
general structure as U-Net. It consists of an encoder path that uses convolutional layers
and downsampling to extract spatial and semantic information from the input image. The
decoder then upsamples these features back to the original resolution to create a pixel-wise
segmentation map. What sets U-Net++ apart is the presence of dense skip connections
between intermediate encoder and decoder layers. The overall network structure is shown
in Figure 2.13.

These connections allow the model to retain both high-level context and fine details,
which improves its performance in scenarios involving complex objects or ambiguous
boundaries. U-Net+-+ also benefits from more reliable training in addition to improved
segmentation results. The dense connections facilitate the flow of gradients through the

network, leading to improved convergence during the learning process. The design also
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Figure 2.13: The structure of U-Net-++ architecture. Image source: Zhou et al. [94].

accommodates deep supervision, which enables the extraction of outputs from a range of
decoder depths. This feature enables the pruning of the model during inference, allowing
for a balance between speed and accuracy that is task-dependent. Nevertheless, these
improvements are accompanied by specific trade-offs. U-Net-++ demands a greater amount
of memory and computation than U-Net, and it is more complicated. It may also take
longer to train and can overfit if the dataset is small and not well-augmented. Despite
these challenges, U-Net-++ remains a strong choice for tasks that require precise and

reliable segmentation.

2.4.4 MANet

The Multi-scale Attention Network (MANet) [95] is an image segmentation model that
integrates attention mechanisms with multi-scale feature fusion to improve segmentation
accuracy and contextual interpretation. It follows an encoder-decoder design, where the
encoder captures features using convolution and downsampling, and the decoder restores
the spatial resolution through upsampling. Attention modules are embedded throughout
the network to help focus on relevant regions while filtering out less informative areas, which
enhances the detection of object edges and fine details. MANet incorporates a multi-scale
feature block that applies convolutional filters of different sizes to extract varied spatial
patterns. This allows the network to recognize both fine and broad visual structures in
the image. By merging features across scales and applying attention, the network becomes
more capable of identifying objects with varying shapes and appearances. These combined

mechanisms improve performance in images containing noise or overlapping components,
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which can pose challenges for other models. The architecture of MANet model is illustrated
in 2.14.
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Figure 2.14: The structure of MANet architecture. Image source: Rui et al. [95].

MANet provides several key advantages, including more accurate object detection
across various object sizes, a better focus on relevant areas, and improved performance in
visually complex environments. However, these benefits come with increased memory usage
and higher computational costs. In addition, the deeper architecture and larger number of
parameters make the training process more demanding. Despite these trade-offs, MANet
remains an effective model for context-rich and detailed image segmentation tasks and can

outperform U-Net++ in scenarios where attention and multi-scale learning are essential.

2.4.5 DeepLabV3-+

DeepLabV3+ [96] is an image segmentation architecture that combines several methods to
collect both local and global information while keeping spatial details. The network uses
atrous convolutions in the encoder to expand the area each filter can cover without reducing
the resolution of the feature maps. This allows the model to detect patterns at different
scales. A key part of the encoder is the Atrous Spatial Pyramid Pooling (ASPP) block.
ASPP applies parallel atrous convolutions with different rates and includes global average
pooling. This approach enables the model to acquire features from both small and large
objects simultaneously, providing it with a more comprehensive understanding of the scene.
The encoder is often built on an efficient backbone network, such as ResNet or EfficientNet.
These backbones are trained to extract detailed features and form powerful representations.

In DeepLabV3+, the Xception backbone is often employed, along with depthwise separable
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convolutions, to enhance the model’s speed and efficiency. The decoder module then refines
the output from the encoder. It upsamples the features and combines them with low-level
features from earlier layers. These low-level features contain fine spatial details, such as edges
and textures, which help improve the accuracy of object borders in the final segmentation
map. The decoder employs several regular convolutional layers to process the combined
features and then applies bilinear upsampling to restore the output to its original image size.
This encoder-decoder structure enables the model to learn both global context and local

details, thereby improving performance in complex scenes. The full architecture is shown in
Figure 2.15.
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Figure 2.15: The structure of DeepLabV3+- architecture. Image source: Chen et al. [96].

DeepLabV3+ has several beneficial features. It can recognize objects of various sizes
by combining information from different spatial scales. The use of atrous convolutions and
the ASPP module enables the model to understand both close-by and distant details in
the image. Its decoder refines object boundaries by combining fine details from previous
layers. These features make DeepLabV3+ particularly useful in scenes with small objects,
blurry edges, or shifting textures and shapes. By employing atrous convolutions, the model
reduces the total number of operations, thereby improving efficiency compared to standard
convolutions. At the same time, DeepLabV3+ has a few major drawbacks. It requires more
memory and processing power than simpler models. The large backbone and multiple paths
in the ASPP block increase the total number of calculations. As a result, training and
inference may be slower, particularly when working with high-resolution images. It might
not be the best option for real-time usage unless it is streamlined or modified. Even so, it

may miss very small details or confuse objects with similar colors or textures.

35



2.4.6 SegFormer

SegFormer [97] is a transformer-based model for image segmentation that utilizes a
hierarchical vision transformer (ViT) encoder and a lightweight Multilayer Perceptron
(MLP) based decoder for feature extraction and the generation of segmentation maps. The
encoder has several transformer stages, wherein spatial resolution is systematically
diminished, but feature dimensionality is enhanced, facilitating multi-scale representation.
SegFormer employs a self-attention mechanism to capture long-range dependencies rather
than conventional convolutional methods. It employs overlapping patch embedding, which
preserves local features more efficiently than non-overlapping tokenization. SegFormer, in
contrast to conventional image transformers, omits positional encoding, enabling the model
to adapt to various input resolutions. The hierarchical encoder, known as the Mix
Transformer (MiT), is designed to produce feature maps at four different resolutions. This
structure enables the model to extract information across different spatial scales while
maintaining a lower number of operations compared to standard attention mechanisms.
Each transformer block within the encoder utilizes spatial reduction attention to reduce
memory usage while still capturing useful global context. Because of this, SegFormer can
learn rich features that incorporate both local detail and wider context, which is crucial for
segmenting objects that appear in various shapes and sizes. SegFormer’s decoder was
designed for multi-scale feature fusion, incorporating upsampling and combining features
gathered from several encoder stages through MLP layers. This enables the model to
preserve fine spatial features and high-level semantic information without relying on
complex upsampling techniques, such as transposed convolutions. The decoder employs a
linear projection to obtain per-pixel classification scores, thereby facilitating efficient
segmentation with minimal computational cost. The network architecture is visualized in
Figure 2.16.
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Figure 2.16: The structure of SegFormer architecture. Image source: Xie et al. |97].
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SegFormer brings several advantages. It runs efficiently even with fewer parameters
and does not require pretraining on large datasets to perform well. It generalizes across
different tasks and domains, and its simple decoder design helps it run faster with lower
memory requirements. At the same time, there are some limitations. Since it depends on
transformer blocks, training can be slower compared to fully convolutional models, and the
simplified decoder may not capture all fine details in very complex images. Still, SegFormer’s
architectural design enables it to capture both local and global contexts efficiently, making

it suitable for a wide range of image segmentation applications.

2.5 Datasets and Dataset Creation Challenges

The scarcity of high-quality datasets remains a persistent challenge in the development
of deep learning models despite the progress made in the complexity and efficacy of the
models [98]. As a result, the development of more resilient and efficient deep learning models
was facilitated by the creation of large datasets such as ImageNet and Microsoft COCO.
The performance and generalization of deep learning models are highly dependent on the
diversity, resolution, and precision of annotations in the training data [5|. However, gathering
and annotating real data is a laborious and expensive process, especially in the field of fire
detection.

In contrast to the medical domain, where this challenge has been well studied, fire
detection has been investigated only sparsely. The development of high-quality fire datasets
presents considerable challenges, primarily due to the inherent unpredictability of fire
events Fires vary significantly in terms of size, intensity, and environmental factors, which
complicates the creation of datasets that accurately represent real-world fire scenarios.
Furthermore, access to fire scenes is often restricted due to safety concerns. Emergency
responders and firefighters operate in high-risk environments, limiting opportunities for
data collection in such situations. Legal and logistical barriers also hinder the process, as
obtaining the necessary permissions to record or share footage of fire incidents can be a
complex and sometimes insurmountable task. These various constraints make it
particularly challenging to compile comprehensive datasets with reliable annotations, which
are essential for training models or conducting detailed research on fire dynamics.

These challenges can be mitigated by synthetic data, which reduces the time and cost
of data generation and circumvents the legal constraints that are associated with the use of
real-world datasets. For synthetic data to be effective, it must sustain visual realism and
include task-specific information. This contributes to the enhancement of generalization and
the reduction of the disparity between real and computer-generated images. Synthetic data
has been extensively investigated by researchers in a variety of machine learning applications

and disciplines, either as a replacement for real data or its supplement.
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2.5.1 Image Annotation

The performance of computer vision models depends heavily on the quality and accuracy
of the training data, which is composed of annotated images or videos. Since a model
learns by generalizing over the provided annotations, any error in the labels is also learned
and reproduced during inference, making precise annotations a critical step in training an
accurate neural network. Image annotation is the process of adding meaningful labels or
tags to images to provide context for machine learning models, particularly in computer
vision tasks [99]. In image segmentation, annotation requires pixel-level precision, where
each pixel in an image is assigned a specific class. This fine-grained labeling allows models
to capture detailed spatial patterns and boundaries between different regions. One
application where precise annotation is especially critical is fire detection. In this context,
image segmentation—based annotation enables models to differentiate flames and smoke
from complex backgrounds at the pixel level. By labeling fire regions with fine-grained
accuracy, segmentation not only improves detection performance but also enhances the
model’s ability to generalize across varying environments, lighting conditions, and fire
intensities. Thus, image annotation for fire detection using image segmentation plays a
vital role in building reliable systems that can support early warning and disaster
management.

Beyond fire detection, the broader development of reliable computer vision systems also
depends on large, high-quality datasets. However, producing such datasets through manual
annotation alone is demanding. Annotations may be created by human experts or assisted by
automated methods, both aiming to generate accurate ground truth data that enables models
to interpret visual information. Because manual labeling is time-consuming and error-prone,
growing attention has turned to semi-automatic and Al-assisted approaches that improve
efficiency while maintaining accuracy. To meet these needs, a variety of annotation tools have
been developed to make dataset construction more scalable, consistent, and less labor- and
time-intensive. Such tools are essential not only for segmentation tasks like fire detection
but also for object detection and other core computer vision applications. The following
subsection examines existing annotation tools, highlighting their strengths and limitations

in supporting robust dataset creation.

Existing Image Annotation Tools

A wide range of tools has been developed to support image annotation, each designed to
meet the needs of different computer vision tasks. At a minimum, these tools provide core
functionalities such as drawing polygons, rectangles, points, and lines to mark objects or
regions of interest. KEqually important is the ability to export annotations in formats
compatible with various deep neural network architectures. Since different tools adopt

different export standards, the choice of an annotation tool often depends not only on its
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labeling features but also on its compatibility with the intended model and workflow [19].
When selecting an image annotation tool, several factors should be carefully considered to
ensure compatibility with the intended application. The choice often depends on the type
of annotation required, since some tools are designed for bounding boxes, others for
keypoints, and others for pixel-level segmentation. Scalability and collaboration features
are also important, particularly for projects that involve large datasets or multiple
annotators who need to coordinate tasks and monitor progress. Many modern platforms
now include semi-automatic or model-assisted labeling functions, which reduce the amount
of manual work while maintaining high accuracy. Additional considerations include the
availability of export formats that match the training pipeline, the usability of the user
interface, the infrastructure required for deployment, and the overall cost of use.
Ultimately, the most suitable tool is one that combines annotation precision with workflow
efficiency while aligning with both the dataset requirements and the broader objectives of

the computer vision project.

Computer Vision Annotation Tool (CVAT) [100] is a free and open-source
application that runs in a web browser and is designed to support the annotation of digital
images and videos. It can be applied to tasks such as image classification, object detection,
and image segmentation. In addition, it enables users to manage projects either locally or
online, which makes collaborative annotation possible. CVAT provides a range of advanced
features, including automatic annotation through the TensorFlow API, the ability to
interpolate bounding boxes across video frames, and flexible project settings that allow for
options such as image flipping, segmentation layers, dataset partitioning, and adjustments
to display quality. The tool is valued for being feature-rich and adaptable, and it is
particularly well-suited for collaborative annotation efforts. These qualities have made it a
popular choice for developing datasets in both research and industry. CVAT has several
limitations. Firstly, it is only available on Google Chrome and other Chromium-based
browsers, which limits its accessibility for users across different client environments.
Secondly, the configuration process and overall performance can be challenging when
handling large-scale datasets. Finally, the user interface requires some time to learn in
order to be used efficiently. Despite these limitations, CVAT has been widely adopted in
domains such as autonomous driving, medical imaging, video surveillance, and robotics,

where the availability of robust and scalable annotated datasets is critical.

Make Sense [101| is an open-source, browser-based image annotation tool. It is
primarily used by researchers and practitioners in computer vision to construct datasets
required for tasks such as object detection and image segmentation. The tool supports
annotation through bounding boxes and polygons, thereby covering common requirements

in image labeling workflows. It also enables the export of annotations into established
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formats, including YOLO, Pascal VOC, COCO, CSV, and VGG JSON, which facilitates
compatibility with widely adopted machine learning pipelines. Since the application runs
directly in a web browser, it does not require installation on local machines and can be
used once images are uploaded. This design increases ease of use but simultaneously
introduces limitations, particularly when projects involve multiple annotators, as
concurrent work on the same dataset is not natively supported. In contrast, server-based
frameworks such as CVAT or Label Studio are better suited for collaborative or large-scale
annotation tasks.  Within these constraints, Make Sense is best characterized as a
lightweight and adaptable tool that serves individual projects or smaller teams, rather than

as a platform optimized for extensive multi-user annotation.

LabelMe [102] is an image annotation tool and dataset created at MIT. The original
system was a web application where users could draw polygons on images and assign
labels. These annotations were stored in XML files and shared with the community. The
web version is no longer open to new users, but the dataset remains available for research.
A Python implementation of LabelMe exists today as a desktop application with a
graphical interface. This version supports polygon, rectangle, circle, and line annotations.
It can also be used to annotate a video by treating frames as images. The program relies
on local storage for importing and exporting data. It can export annotations in formats
such as JSON, VOC, COCO, and CSV. A key strength of LabelMe is the precision of
polygon annotations and the large number of contributed images. Another limitation is the
lack of built-in collaboration features. Datasets must be shared manually across computers
if multiple users are involved. Despite these challenges, LabelMe remains a widely used and

accessible tool for creating annotated datasets in computer vision.

Labelbox [103] is a paid annotation platform used to prepare datasets for machine
learning research. It provides a visual interface for both annotation and data exploration, and
supports images, video, geospatial imagery, natural language documents, audio, and HTML.
Labeled data can be exported in the Labelbox JSON format and converted to other formats
to match model requirements. The platform includes collaboration features that streamline
work on large datasets, including a review queue for approval or revision, time tracking
for labeling effort, summaries of label distribution, and in-context commenting. A label
assistant can apply private models to propose annotations, and integrated exploration tools
help researchers assess class balance and feature coverage, with optional training utilities to
close the loop between labeling and model evaluation. Projects can be managed through
dataset versioning and access controls, and the system integrates with common storage and

SDKs for scripted import and export.
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2.5.2 Datasets for Fire Detection

To support fire and smoke detection tasks, a variety of datasets have been created, each
with its own unique characteristics, including modality, annotation type, and
environmental diversity. These variances facilitate model training and evaluation, ensuring
their robustness in diverse environments. The Corsican Fire Database [104] contains RGB
and near-infrared (NIR) images for detecting and identifying wildland fires. In this dataset,
the NIR images are captured with a longer exposure time, which increases the brightness of
fire areas and simplifies segmentation using basic image processing methods. It includes
500 RGB fire images, 100 simultaneously captured RGB and NIR image pairs, and five
sequences of RGB and NIR image pairs. All images are annotated at the pixel level,
supporting the development of semantic segmentation models. The BowFire [105] dataset
comprises of 226 images with resolutions ranging from 640 x 480 to 1653 x 1024 pixels.
The dataset includes images depicting fires in various contexts such as building fires, car
accidents, street riots, and woodland fires. The D-Fire dataset [106] contains images
intended for detecting both fire and smoke. It is primarily used to train the YOLO object
detection models by applying annotations formatted in YOLO to identify fire and smoke in
individual images. The dataset includes 1,164 fire images, 5,867 smoke images, 4,658
images showing both fire and smoke and 9,388 images containing neither. It also provides
14,692 bounding boxes for fire and 11,865 bounding boxes for smoke. Most of the images
are captured from video streams recorded by cameras placed on buildings or poles with a
wide view of open areas. The image resolution varies significantly, ranging from 210 x 150
to 3791 x 2538 pixels. The FLAME dataset [107] includes drone images of fire collected
during a controlled burn of forest debris in a pine area located in Arizona. It contains data
from both RGB cameras and thermal heatmaps captured using infrared sensors. The RGB
images support classification tasks using 39,375 labeled training examples, marked as either
"Fire" or "Non-Fire," along with 8,617 labeled examples for testing. In addition, 2,003
images in the dataset include pixel-level annotations, which are suitable for developing
segmentation models. The successor dataset, FLAME 2 [108], is a multi-modal collection
gathered from a drone using side-by-side dual-feed video that includes both RGB and
thermal images of fire in a pine forest with an open canopy. Each image frame was
carefully labeled as either "fire" or "no-fire" by two human experts, who used both RGB
and thermal views to make accurate decisions. The publication also introduces a deep
learning method developed for detecting fire and smoke at the pixel level. The Dataset for
Fire and Smoke Detection (DFS) [109] is a high-quality dataset designed to support the
advancement of research in fire and smoke detection using object detection. It is suitable
for a variety of detection tasks, as it comprised of 9,462 real-scene images, each labeled
according to the size of the fire. The dataset not only includes annotations for fire and

smoke to enhance accuracy, but also introduces a new class, other, for items that may
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resemble fire due to their similar color or luminosity, thereby reducing false detections. All
annotations follow strict and reasonable rules, and extensive experiments using various
detection models provide a robust benchmark for evaluating performance on this dataset.
The Flame and Smoke Semantic Dataset (FSSD) [82] provides detailed semantic
annotations of fire-related objects captured in realistic indoor environments with diverse
fire sources. This dataset has been evaluated using prominent deep learning architectures
such as FCN, PSPNet, and DeepLabV3+, all of which demonstrated notable improvements
in segmentation performance. Addressing the scarcity of training data specific to embers,
the FireFly dataset [110| introduces a synthetic dataset of outdoor fires, generated with
Unreal Engine 4. It comprises 19,273 frames designed to assess the performance of four
advanced object detection models. Results show that incorporating this synthetic data led
to an increase of up to 8.57% in mean average precision when applied to real-world wildfire
scenarios, compared to models trained solely on limited real data. In a related direction,
the SWIFT dataset [111] provides a large-scale synthetic dataset focused on outdoor
wildfire scenarios, particularly in forested biomes. Developed using Unreal Engine 5, it
combines high graphical realism with varied environmental conditions to depict fire and
smoke under diverse outdoor settings. The dataset contains approximately 69,000
annotated images, each labeled for fire, smoke, both, or neither, and accompanied by
segmentation masks and contextual metadata (e.g., humidity, wind, and camera
viewpoint), thereby offering a valuable benchmark for wildfire-focused computer vision
research.  While several synthetic datasets have been developed for outdoor wildfire
research, none have addressed indoor fire scenarios. To fill this gap, the SYN-FIRE
dataset |5] introduces the first publicly available synthetic dataset dedicated to indoor fire
detection in industrial settings. It comprises 1,402 images that simulate fire in industrial
environments across five distinct scenarios, each designed to reflect typical indoor
conditions by varying fire appearance, camera angles, and illumination at different times of
day. By providing the first synthetic dataset for indoor fire imagery, SYN-FIRE represents
a significant contribution to advancing research in image-based fire detection systems.
Figure 2.17 displays the RGB image along with the corresponding annotations from all the

described datasets in this subsection.

42



Corsican
FireDB [104]

BoW€Fire
Dataset [105]

D-Fire
Dataset [106]

FLAME [107]

FLAME
2 [108]

DFS
Dataset [109]

FSSD
Dataset [82]

FireBot [19]

FireFly [110]

SWIFT [111]

SYN-
FIRE [5]

Figure 2.17: Evaluated datasets and examples of input RGB images.
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Ensemble-Based Model for Indoor Fire

Detection with Uncertainty Estimation

This chapter introduces a novel ensemble-based uncertainty estimation model for fire
detection in indoor environments. The primary challenge of an image-based fire detection
system is accurately identifying the shape and contours of flames. This task is complicated
by several factors, including diverse backgrounds, varying fire sizes, and interference from
objects that may resemble flames. This chapter begins with an overview of CNNs used in
related research and compares their performance on our indoor fire dataset. Next, we
propose the F2M model, which combines the fire segmentation masks produced by the five
state-of-the-art models benchmarked in the first part of the chapter.

The chapter is organized as follows. Section 3.1 presents the main research objectives.
Section 3.2 describes the benchmark dataset, explains the training process, and evaluates
six modern semantic segmentation models. The F2M architecture and its evaluation results
are discussed in Section 3.3, together with the strengths and limitations of the proposed

method. Final remarks and concluding observations can be found in Section 3.4.

3.1 Research Objectives

This research aims to introduce the F2M model for semantic segmentation of indoor fires,
adapting and evaluating state-of-the-art segmentation architectures for this task rather

than proposing a new general backbone, and to quantify prediction reliability using Monte
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Carlo—based uncertainty estimations. The biggest challenge that an image-based fire
detection system must overcome is the inability to precisely determine the contours and
shapes of flames. F2M is a compact encoder—decoder model that integrates outputs from
five state-of-the-art CNN segmenters, distilling them into a single network that improves
segmentation mask quality while reducing parameter count and inference cost. Despite the
lack of scientific literature addressing the semantic segmentation of indoor fires in
industrial environments, we have integrated established techniques from other deep neural
network architectures to enhance model performance. We incorporate skip connections and
Squeeze-and-Excitation (SE) blocks in our approach, as both have demonstrated their
effectiveness in various contexts. Specifically, skip connections are implemented in the F2M
model to maintain the spatial integrity of critical features by directly transmitting
information from the encoder to the decoder. Skip connections help recover spatial details
lost during downsampling, ultimately improving the model’s ability to preserve crucial
feature information. Additionally, the SE Block [112] ensures the retention of the most
relevant and optimal features within the feature map, allowing the model to prioritize the
most significant information for accurate semantic segmentation. Therefore, our research

objectives are:

1. To benchmark existing state-of-the-art segmentation models for fire segmentation on

custom indoor fire dataset.

2. To propose a novel F2M model that combines best-performing models to enhance fire

segmentation accuracy.

3. To introduce an uncertainty estimation in fire segmentation through Monte Carlo

dropout.

4. To evaluate and compare the novel F2M model performance with the best-performing
model on 128 x 128, 256 x 256, and 512 x 512 resolutions.

3.2 Fire Segmentation Model Benchmark

This section provides a detailed dataset description that is implemented in the benchmark,
as well as an overview of the network training procedure and implementation requirements.
Additionally, we provide a benchmark analysis of six state-of-the-art semantic segmentation
models: FPN, U-Net, U-Net++, MANet, DeepLabV3+, and SegFormer. For each model,
45 unique model configurations were generated by training them with three different input
image resolutions and three distinct backbone architectures. The figure 3.1 shows the F2M
research process. Data augmentation is applied as the first step to improve the performance
of state-of-the-art semantic segmentation models. After each training phase, every model

is evaluated using various encoder backbones and sets of hyperparameters. Models that
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achieved the highest Dice score on the validation dataset were selected for the final F2M
model. Finally, uncertainty estimation was conducted during the inference stage for each

selected model.
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Figure 3.1: Flowchart showing the study workflow: data preparation, model development,
performance evaluation, and final assembly with uncertainty analysis. Image source: Arlovic
et al. |11].

3.2.1 Utilized Dataset

An extensive literature survey shows that the majority of related research is on the
detection of outdoor fires. Outdoor fires have attracted significant interest from scientists
due to the availability of data, the ease of surveying large areas, compelling applications
like forest fires, and the importance of early fire detection due to the high environmental
hazards. In contrast, the detection of indoor fires has largely relied on sensor systems. The
volume of digitized data regarding indoor fires is minimal compared to outdoor fires,
indicating significant potential for development, research, and enhancement. Therefore, we
made a dataset for this study that primarily depicts flames and fires in a variety of indoor
environments, such as residential structures, office buildings, shopping malls, warehouses,
and industrial facilities. The primary objective was to create an extensive and
comprehensive dataset for detecting indoor fires. Additionally, in order to improve the
dataset’s realism and variability, we applied a variety of secondary light sources, including
reflections, various types of artificial lighting (such as incandescent, fluorescent, and neon),
and natural illumination from sunrises and sunsets. Numerous images feature obscured
flames, camera movement around the fire, motion blur, and flames of differing sizes and
distances from the camera. Furthermore, to enhance the diversity of our dataset, we
incorporated images of external flames, including those on rooftops and visible from
windows. The images in the dataset were collected from multiple sources, mainly from FM
Global and fire departments located in Los Angeles (USA), Washington D.C. (USA),
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Tokyo (Japan), and Zagreb (Croatia). These sources allowed us to utilize their resources,
primarily images depicting real-life situations. In the annotation process of indoor fires,
particular attention was directed toward scenarios involving smoke, varying visibility levels,
and surrounding obstacles. Factors including image resolution, image scale, motion blur,
and occlusion that may influence the detection of pixels representing fire were also taken
into account. Table Table 3.1 presents the results of the detailed dataset analysis following

a comprehensive annotation process.

Table 3.1: Dataset statistics grouped by metadata collected from image annotation.

Training Dataset Validation Dataset Test Dataset

Annotated Images 5289 650 683
Average Image Size 1642 x 976 1640 x 968 1640 x 968
Number of Annotations 27745 3583 3833
Flame Annotations 23874 3100 3334
Smoke Annotations 3517 439 454
Small Flames 2167 263 276
Medium Flames 2123 258 268
Large Flames 595 73 84
No Flame 404 56 55
Warehouse Space 1190 239 256
Office Space 138 22 24
Indoor building 1946 238 241
Outdoor Building 580 79 74
Mall Space 5 0 2
Open Space 437 52 56
Unknown Space 180 20 26
Daytime 1861 254 228
Nighttime 611 66 95
Sunrise/Sunset 69 7 5
Unknown Time 2748 323 395
Containing

Watermark 1270 154 152
Blurred Images 1836 218 234

Containing Other
Light Sources 4248 o15 053

Containing People 1721 222 216

3.2.2 Dataset preparation

To ensure high-quality data for our deep learning models, we developed a custom image
annotation tool designed to centralize dataset management and optimize the labeling

process. This system uses a server-hosted architecture in which annotators access their
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batch assignments via a web browser. A major advantage of this approach is that
administrators maintain full oversight of the dataset. They can effectively manage the
dataset by inspecting images and performing necessary actions, such as uploading or
deleting samples. Efficiency is further improved through automated assignment and session
persistence. When an annotator logs into the tool, a new set of images is automatically
provided for processing. If a user leaves a session before finishing a batch, the system
reloads all unsaved images so they can continue their work exactly where they left off.

The tool incorporates a randomized delivery mechanism to support a double-blind review
process. To reduce bias in the initial labeling, experts manually review each annotation to
confirm its accuracy. During this review stage, the experts make necessary corrections and
adjustments to the labels. This ensures that the final ground truth is both precise and
consistent throughout the whole dataset. Once annotations are finalized, the data can be
exported in standardized formats such as COCO or YOLO. This enables seamless integration
with various deep learning frameworks and training pipelines. This structured workflow
ensures the final dataset is both reliable and consistent for the subsequent training phases.
A brief preview of the dataset is shown in Figure 3.2.

Determining the presence of fire or smoke in an image can be challenging in certain
scenarios. Fire and smoke exhibit diverse shapes, colors, and transparency characteristics,
all influencing the area detected. In addition to the essential characteristics of flame and
smoke, various factors, including low image quality, scale, motion blur, and occlusion, may
obscure this assessment. This decision depends on human judgment due to the absence of
an objective criterion for including or excluding a fire or smoke zone. Isolated small flame
regions may occasionally emerge from the flickering of the primary fire source. The precise
contour of each flame is nearly impossible to annotate due to its tendency to flicker between
2 and 10 Hz [19]. Before beginning the annotation process, guidelines were established to

guarantee the quality and uniformity of annotations. The rules are as follows:
1. The polygon must match the flame’s shape exactly, without straight lines or rectangles.
2. No new polygons should be made if minor objects (like window or door grills) are in

front of the flame and/or smoke. Additional polygons must be added if a large object

is in front of the smoke or flame.

3. The annotated polygon should include as many fire and /or smoke pixels as possible. It
is recommended to annotate pixels inside the flames rather than annotating transparent

border pixels or those outside the flames.

4. Segment overlaps should be avoided because it is impossible to determine which

segment is in front.

5. Smoke is marked regardless of its transparency unless it covers the entire indoor

environment.
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Figure 3.2: The visualization of RGB images in the utilized dataset. Image source: Arlovic
et al. |11].
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6. A polygon does not represent a reflected flame but rather one with the appropriate

texture and color.

7. Reflections of flames and other light, lasers, light bulbs, lamps, and the glow of other

light sources should not be annotated.

An additional metadata component is added to each image, and the goal is to evaluate
how the model performs by adjusting and selecting specific parameters. During the image
annotation process, annotators answer questions about the image context. Capturing more
metadata alongside the usual image annotations helped us actually understand what is
happening in the dataset. The collected information covers straightforward details about
each image, making later analysis cleaner and more reliable. The informations obtained

from annotators regarding a specific image include answers to the following questions:
e Verification of fire or smoke presence in the image.
e Analysis of the spatial context depicted in the image.
e Identification of visible flames in the image.
e A qualitative evaluation of the most significant flame in the image.
e Examination of the ambient lighting conditions depicted in the image.

e Assess for the presence of watermarks, such as timestamps or text that has been

artificially inserted.
e Assessment whether image is computer-generated.
e Assessment of image blurriness, particularly about the clarity of fire contours.
e Assessment of the presence of additional light sources.

e Assess whether individuals are present in the image.

3.2.3 Model Training

The models were selected for their distinctive mechanisms and strong performance in
different segmentation tasks. These include pyramidal feature extraction, traditional
encoder-decoder architectures, attention-based enhancements, advanced spatial feature
aggregation, and transformer-based representations. Our objective was to establish a
comprehensive benchmark that simplifies the selection of suitable models for fire
segmentation by integrating a diverse set of deep learning architectures. Each model was
trained with images in three different input resolutions (256 x 256, 640 x 640, and
800 x 800 pixels) and three encoder backbones (EfficientNet-B4, EfficientNet-B7, and
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ResNeXt-50 32x4d), resulting in 45 unique model configurations. These backbones were
chosen for their proven effectiveness in prior studies, providing a balanced mix of
architectures well-suited for fire segmentation tasks. Training was conducted on a
high-performance workstation equipped with dual NVIDIA RTX A6000 GPUs, a Ryzen 9
5900X processor, and 128 GB of RAM. Ubuntu 24.04 LTS was utilized tohether with
PyTorch deep learning framework.

The dataset was divided into three non-overlapping subsets: 80% for training, 10% for
validation, and 10% for testing. Since the original images had higher resolutions than
supported model input resolutions, each image was resized to preserve its aspect ratio and
then zero-padded to match the training resolution. To increase data diversity and improve
generalization, we applied extensive augmentation. Geometric transformations included
rotation by +5°, horizontal flipping, coarse dropout, and perspective warping. Color and
noise transformations included color jitter, random brightness and contrast adjustments,
Gaussian and ISO noise, and Gaussian blur. These augmentations were designed to
represent realistic fire scenarios. Training was performed for a maximum of 200 epochs,
with early stopping triggered if the validation loss failed to improve for 30 consecutive
epochs. We used the AdamW optimizer [113| with a weight decay of 1073, which decouples
weight decay from gradient updates. For learning rate scheduling, we adopted the
OneCycleLR scheduler [114]. This scheduler increases the learning rate from an initial
value to a predefined maximum, then gradually reduces it back to the initial value.
Although the scheduler dynamically adapts the learning rate, it still requires an initial
value to be specified. We experimentally tested initial learning rates ranging from 10~" to
1072 and selected 1072 as optimal, with the maximum rate set to 1072. We compared
Binary Cross-Entropy (BCE) and Mean Squared Error (MSE) for binary fire segmentation.
In our experiments, BCE proved to be more suitable than MSE for modeling the
discrepancy between predicted probabilities and ground-truth masks. We trained and
evaluated at both high and low input resolutions. High resolution helped capture

fine-grained fire patterns, while low resolution was used to assess applicability in robotics
and IoT.

3.2.4 Benchmarking Models

Benchmark Metrics

The metrics employed in this study are widely recognized in image segmentation:
Serensen—Dice Score and Intersection over Union (IoU) score. The equation presented in
Equation 3.1 shows the formulation of the Dice Score.

2TP

Dice — 1
T TP FPYFN (3.1)
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The IoU score is represented by the equation 3.2:

TP
ToU — 2
U= TP T FPTFN (3.2)

The number of true positives is represented by TP in both equations. The expression
refers to the pixels that are classified as fire in the ground truth mask and those that are
predicted as fire by the model. Conversely, FP denotes false positive, which occurs when
the model inaccurately predicts that a pixel is on fire, and FN denotes false negative when
the model fails to predict that the pixel is on fire. The IoU metric commonly penalizes
single instances of misclassification much more than the Dice Score, even though both
metrics measure a similar value.  Consequently, the Dice Score provides a more
comprehensive understanding of the average model performance. Nevertheless, both
metrics encounter difficulties when the image only contains relatively small fire regions (a
small number of true positives) and a model predicts a significant amount of false positives.
In such instances, both metrics would yield mediocre values. Subsequently, we evaluated
the Total error metric to determine the precise error of the employed models. The equation
of the Total Error metric is shown in 3.3:

FP+ FN

Total B = 3.3
otal Error I (3.3)

pT
The term N, denotes the total number of pixels present in the image. Consequently, the
total error is defined as the ratio of incorrectly predicted pixels to the overall pixel count in

the image.

Evaluation of Benchmarked Models

To identify the best model, we adjusted the threshold that determines whether a pixel is
classified as fire on the validation set. The final evaluation of the model performance was
conducted on the test set, which contains images that were not included in the training
or validation datasets. We examined a range of thresholds from 10% to 60% and selected
the optimal threshold for each model. Results of each model are extensively analyzed in
Table 3.2, where the best-performing models in each of the three resolutions are indicated
in bold text.

When observing models, we initially considered the Dice Score, Total Error, and IoU
score when selecting the best performing model. No strict guidelines exist on which metric
is more important in image segmentation tasks. However, the Dice Score is more general in
segmentation tasks, so we prioritized it over the IoU. The Total error measures absolute error
and is placed second in priority, as it fundamentally measures a different type of error than
the IoU and Dice Score. For the 256 x 256 resolution, the model with the best performance

in terms of Dice Score, IoU Score, and Total Error was U-Net++. It achieved a Dice Score
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Table 3.2: Benchmark results of the performance of each tested model on the validation and
test datasets.

Validation Dataset Test Dataset

Models Resolution Encoder Thres- Dice TIoU Total Dice IoU Total
Backbone hold Coeff. Score Error Coeff. Score Error

U-Net 256x256 ResNeXt-50 32x4d 33% 0.811 0.858 0.00282 0.809 0.849 0.00304
U-Net-++ 256x256 EfficientNet B7 34% 0.821 0.868 0.00242 0.820 0.859  0.00250
Manet 256x256 EfficientNet B7 30% 0.810 0.868 0.00252 0.810 0.861 0.00252
FPN 256x256 ResNeXt-50 32x4d 30% 0.764 0.831 0.00252 0.766  0.829 0.00261
DeepLabV3+ 256x256 EfficientNet B7 30% 0.774  0.811 0.00271  0.772 0.805 0.00278
SegFormer 256x256 MiT-B3 39% 0.688 0.746 0.00209 0.676 0.736  0.00205
U-Net 640x640 ResNeXt-50 32x4d  41% 0.851 0.878 0.00250 0.852 0.873  0.00276
U-Net-++ 640x640 ResNeXt-50 32x4d  41% 0.849 0.882 0.00236  0.847 0.874 0.00266
Manet 640x640 EfficientNet B7 40% 0.843 0.856 0.00287 0.839 0.846  0.00298
FPN 640x640 ResNeXt-50 32x4d  40% 0.846 0.872 0.00254 0.842 0.861 0.00280
DeepLabV3+ 640x640 EfficientNet B7 41% 0.843 0.882 0.00239 0.838 0.870  0.00255
SegFormer 640x640 MiT-B3 46% 0.764 0.793 0.00193 0.759 0.790 0.00173
U-Net 800x800 ResNeXt-50 32x4d  40% 0.850 0.868 0.00279 0.848 0.855  0.00287
U-Net++ 800x800 EfficientNet B7 50% 0.855 0.880 0.00240 0.849 0.862 0.00274
Manet 800x800 EfficientNet B7 50% 0.848 0.872 0.00235 0.844 0.862 0.00258
FPN 800x800 ResNeXt-50 32x4d 50% 0.845 0.858 0.00319 0.838 0.845 0.00328
DeepLabV3+ 800x800 ResNeXt-50 32x4d ~ 40% 0.842 0.882 0.00221 0.837 0.870 0.00244
SegFormer 800x800 MiT-B3 42% 0.771 0.810 0.00162 0.764 0.803 0.00147

of 0.820 on the test set, a Total Error of 0.00250, and an IoU Score of 0.859. Despite
SegFormer achieving the lowest Total Error (0.00205) and MAnet achieving the highest IoU
Score (0.0861), we selected U-Net++ because of its superior Dice Score and marginally
lower IoU score compared to MAnet. At a resolution of 640 x 640, the optimal model is
U-Net, achieving a Dice Score of 0.852 on the test set. The second-ranked model, U-Net+-+,
obtained a Dice Score of 0.847 and a slightly superior IoU score of 0.874 compared to U-
Net’s score of 0.873. In the 800 x 800 image resolution, U-Net-++ performed best, achieving
a Dice Score of 0.849. DeepLabV3+ and SegFormer attained the greatest IoU score of 0.870
and the lowest total error of 0.00147, surpassing all other models at the same resolution.
U-Net++ consistently exhibited superior performance across several resolutions, with the
most notable improvement observed at 256x256 resolution. In summary, U-Net++ with
the EfficientNetB7 encoder backbone performs the best at 256 x 256 resolution, followed
by U-Net with ResNeXt-50 32x4d encoder backbone at 640 x 640 resolution, and U-Net++
with the EfficientNetB7 encoder backbone at 800 x 800. Although SegFormer’s hierarchical
Transformer encoder and efficient MLP decoder enabled it to achieve the lowest Total Error
by minimizing absolute pixel-level mistakes, our benchmark prioritized the Dice Score as the
primary evaluation metric, in which U-Net++ consistently outperformed SegFormer while
also achieving competitive loU results, thereby establishing U-Net++ as the superior model
in this study.
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3.3 F2M Model

The F2M model is designed to combine the five best-performing models, utilizing their
complementary capabilities to improve segmentation performance. This research examined
the assumption that an ensemble of the best-performing models will produce superior results
compared to using only the best-performing model. This section offers an in-depth look at

F2M architecture, bias-imputation strategy, and its influence on segmentation performance.

3.3.1 Architecture Overview

The network integrates various models to capture different feature representations, reduce
individual model biases, and improve generalization across different contexts. Significant
attention was placed on explainability, particularly uncertainty estimation, in developing
the proposed model. Our main goal was to develop a compact and efficient model capable
of learning from several segmentation masks, which also provide uncertainty in its decisions
(through the Monte Carlo dropout). Estimating uncertainty is a crucial element of machine
learning that enhances the reliability of the employed models and algorithms, facilitating
improved interpretation of model confidence and identifying potential mistake areas [115].
Furthermore, this improves model robustness and guarantees dependable deployment in
practical applications.

The F2M topology with the number of layers and layer sizes is shown in Figure 3.3, while

the complete neural network can be expressed using Equation 3.4.

j=CH(FEB(Y), Z"’le) (3.4)

where CH represents Concatenation Head, FEB is Feature Extraction Branch with
respective 5-channel input denominated with Y, and the sum which represents Bias Branch
over input data Y. The model was developed following the comprehensive research on
various architectures, methods, and optimizations. Initially, we tried to build a single
Feature Extraction Branch by combining the masks with 1 x 1 convolution layers, which
yielded an inferior Dice Score. This concept was promptly discarded as a model reliant
exclusively on 1 x 1 convolutions lacks sufficient power to derive new information from the
input masks. Consequently, we initiated the experiment with 3 x 3 convolutions, which
produced markedly superior outcomes. After evaluating several pooling methods, we
selected Adaptive Max Pool 2D to reduce the dimensions of the layers. With Adaptive
Max Pool 2D, the neural network was prompted to concentrate on the essential
components of the input data. Inspired by the U-Net model, we incorporated skip
connections within the Feature Extraction Branch (FEB) to mitigate spatial context loss
during downsampling. Consequently, a large number of channels, some of which provided

minimal to no valuable information, motivated us to integrate the Squeeze and Excitation
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block for adaptive recalibration of channel-wise features [112]. FEB’s addition stabilized

the neural network’s training and improved its performance.

Bias Branch
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Figure 3.3: The architecture of the F2M network for an image size of 256x256 pixels, with
layers adjusted for different resolutions. Image source: Arlovic et al. [11].

The Concatenation Head generated the final output of the F2M, which included
dropout layers that functioned both as regularization and a foundation for Monte-Carlo
dropout uncertainty estimation. Initially, we incorporated a dropout layer following each
convolution layer to prevent the neural network from overfitting. Optimal results were
achieved with a single dropout layer at the end of the neural network, with a dropout rate
of 0.1. However, a range of dropout values from 0.1 to 0.5 were systematically evaluated.
The most significant novelty of the F2M is the introduction of Bias branch, which regulates
the bias of the extracted features. Applying the Shapely’s [116] approach, which evaluated
the features relative to the expected neural network output, we opted to employ the mean
of the segmentation masks as the bias for the extracted features. With the implementation
of the bias branch, the model converged approximately by the 60" epoch and improved the
Dice Score by approximately 1.5% for all evaluated networks. We utilized the same
parameters employed for the training of segmentation models in the benchmark, except for
the batch size. In the F2M training, we selected a batch size of 8. Batch sizes ranging from
4 to 64 were evaluated, and we found that training loss and validation accuracy remained
stable across these settings. Since larger batch sizes offered no performance gain but

increased memory requirements, we fixed the batch size at 8.
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3.3.2 Ensemble Evaluation

We evaluated F2M performance across three resolutions against the best model for each
resolution. The comparison is shown in Table 3.3, where the best results for each metric are
highlighted in bold.

Table 3.3: The F2M model performance comparison against the best benchmarked model
for each resolution.

Validation Dataset Test Dataset

Models Resolution Threshold Dice Score IoU Score Total Error Dice Score IoU Score Total Error

U-Net++ 256x256 34% 0.821 0.868 0.00242 0.820 0.859 0.00250
F2M 256x256 3% 0.855 0.892 0.00179 0.853 0.883 0.00188
U-Net 640x640 41% 0.851 0.878 0.00250 0.852 0.873 0.00276
F2M 640x640 41% 0.862 0.899 0.00181 0.862 0.899 0.00198

U-Net++ 800x800 50% 0.855 0.880 0.00240 0.849 0.862 0.00274
F2M 800x800 3% 0.860 0.914 0.00165 0.861 0.904 0.00182

The F2M model outperformed other neural networks across all resolutions. The Dice
Score on the test set exhibited a difference of 4.02% between U-Net++ and F2M, with the
most substantial increase in performance observed at the lowest resolution (256 x 256). In
addition, the Dice Score increased by 1.17% and 1.41% at resolutions of 640 x 640 and
800 x 800, respectively. It is important to note that the IoU score and Total Error metric
exhibited greater improvements across all resolutions. F2M obtained improvements in IoU
scores of 2.79%, 2.97%, and 4.87% at resolutions of 256 x 256, 640 x 640, and 800 x 800,
respectively. The Total Error was reduced by 24.8% (from 0.00250 to 0.00188) at 256 x 256,
by 28.3% (from 0.00276 to 0.00198) at 640 x 640, and by 33.57% (from 0.00274 to 0.00182)
at 800 x 800. The results from the validation set displayed a comparable trend to those from
the test set, suggesting that the model did not experience overfitting.

Table 3.4 presents the average inference time for each model in the research, including
F2M and their corresponding parameter sizes.  The results demonstrate that the
computational cost imposed by the F2M network is minimal relative to the total inference
duration of individual neural networks. On average, F2M experiences an additional
computational cost of around 1.3ms compared to the slowest neural network tested in the
benchmark. Furthermore, input image resolution substantially influences the inference time
because higher resolutions result in extended processing times. Furthermore, F2M contains
a much reduced quantity of parameters in comparison to other networks. SegFormer, an
attention-based neural network, does not demonstrate a significant decrease in parameter

count compared to convolutional designs.
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Table 3.4: Comparison of model performance: Average Inference Time and Number of
Parameters per sample.

Models Resolution Encoder Backbone Time [ms per sample] Number of parameters
U-Net 256x256 ResNeXt-50 32x4d 5.715 £ 0.359 31 992 977
U-Net++ 256x256 EfficientNet B7 15.459 4+ 0.745 112 220 049
MAnet 256x256 EfficientNet B7 29.923 £+ 1.994 77 998 421
FPN 256x256 ResNeXt-50 32x4d 5.475 £ 0.558 25 587 905
DeepLabV3+ 256x256 EfficientNet B7 26.663 £ 1.900 65 106 273
SegFormer 256x256 MiT-B3 36.684 £+ 4.057 47 224 002
F2M 256x256 None 1.328 + 10.128 333 467
U-Net 640x640 ResNeXt-50 32x4d 13.119 + 0.048 31 992 977
U-Net++ 640x640 ResNeXt-50 32x4d 35.923 £+ 0.215 48 457 617
MAnet 640x640 EfficientNet B7 36.818 £ 0.406 77 998 421
FPN 640x640 ResNeXt-50 32x4d 10.671 + 0.032 25 587 905
DeepLabV3+ 640x640 EfficientNet B7 48.073 4+ 0.433 65 106 273
SegFormer 640x640 MiT-B3 38.991 + 3.102 47 224 002
F2M 640x640 None 1.358 + 3.622 333 467
U-Net 800x800 ResNeXt-50 32x4d 18.877 + 0.057 31 992 977
U-Net++ 800x800 EfficientNet B7 69.021 £ 0.522 68 163 553
MAnet 800x800 EfficientNet B7 57.191 £ 0.482 77 998 421
FPN 800x800 ResNeXt-50 32x4d 15.074 + 0.043 25 587 905
DeepLabV3-+ 800x800 ResNeXt-50 32x4d 17.965 + 0.102 26 149 457
SegFormer 800x800 MiT-B3 52.672 + 1.381 47 224 002
F2M 800x800 None 1.681 + 4.671 333 467

F2M component evaluation

In this study, we introduced a novel bias branch, which we hypothesized increases model
performance. To validate our hypothesis, we conducted a comparative analysis between two
versions of F2M: without the Bias Branch (only with the Feature Extraction Branch) and the
complete F2M network (Feature Extraction Branch + Bias Branch). The obtained results
are summarized in Table 3.5. Across 256 x 256 resolution, complete F2M achieved higher
Dice and IoU scores on both the validation and test datasets, with improvements ranging
from 0.5% to 1.1%, respectively. However, the model without Bias Branch outperformed by a
margin in Total Error. On the test dataset, complete F2M showed a substantial reduction in
Total Error, with a decrease of 20.8% from 0.00250 to 0.00198. Notable increase ranging from
1.7% to 3.1% in Dice Score and IoU at a resolution of 640 x 640. At a resolution of 800 x 800,
complete F2M showed a 0.7% increase in Dice Score, a 2.7% increase in IoU Score, and a
decrease in Total Error by 25.4% (0.00244 to 0.00182) on the test dataset. Our experiments
demonstrate that adding the Bias Branch improves the effectiveness of the F2M model and
facilitates the model training process. Figure 3.4 presents the Dice score, IoU, and Total
Error curves for the validation dataset at a resolution of 640 x 640. Compared to the model
without a Bias Branch, the complete F2M graphs display significantly reduced fluctuations

and are noticeably smoother. This pattern is uniform across all tested resolutions.
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Table 3.5: Importance of Bias branch: Results of F2M with and without Bias branch

Validation Dataset Test Dataset
Thres- Dice ToU Total Dice TIoU Total
hold Score Score FError Score Score Error

Resolution Model

Feature Extraction 33%  0.850 0.884 0.00178 0.848 0.874 0.00186

256x256 Branch
F2M 3% 0.855 0.892 0.00179 0.853 0.883 0.00188
640640 Feature Extraction Branch 38% 0.863 0.881 0.00228 0.856 0.868  0.00250
F2M 41% 0.862 0.899 0.00181 0.862 0.899 0.00198
800800 Feature Extraction Branch 33% 0.860 0.893 0.00213 0.854 0.877 0.00244
* F2M 3% 0.860 0.914 0.00165 0.861 0.904 0.00182

Uncertainty evaluation

To evaluate the uncertainty F2M predictions, we implemented Monte Carlo dropout by
processing an identical input image through the model 100 times. The results are shown
in Figure 3.6, with the final output of the F2M model presented in the last column. In
the final output, the standard deviation (STD) of the average predicted mask from 100
F2M tests with dropout enabled is included. These values show the model’s confidence and
prediction at each pixel. White areas in the STD mask indicate substantial uncertainty,
while black areas indicate that the model is entirely certain of its decision. To illustrate
the standard deviation of F2M prediction alongside the mask for the user examining the
final results, we have introduced a 3D graph representing the predicted mask on the X
and Y axes. In contrast, the standard deviation derived from the uncertainty estimation for
each pixel is positioned on the Z-axis. Figure 3.5 shows the Monte Carlo dropout uncertainty
assessment over 100 iterations on the same input image. Uncertainty is higher at the borders
of predicted regions, suggesting that the model is confident about the main fire areas but

less certain about where the fire boundaries end.

3.3.3 Discussion

In contrast to previous fire detection studies that mostly employ U-Net segmentation
models (e.g., [4]), our study expands upon these methods. The U-Net++ architecture was
utilized in this research because it outperformed not only the U-Net model but also the
other benchmarked models in this study, particularly in the context of complex
segmentation tasks. This performance gain, while modest, can be attributed to U-Net++'s
redesigned skip connections and nested architecture, which provided more effective feature
propagation. As a result, it achieved slightly higher Dice Score results, as well as
improvements in Total Error and IoU, compared to the other benchmarked models.

Although these modifications are claimed to improve model performance, their impact on
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our indoor fire detection dataset remains unclear. Our benchmarking experiments yielded
varied outcomes, with some models surpassing those documented in prior studies, while
others did not reach comparable performance. Thus, identifying the "optimal" model is a
challenging task that requires extensive experimentation across several datasets, a process
impeded by the restricted availability of publicly accessible fire segmentation datasets. Our
novel strategy presents F2M, a methodology aimed at improving existing research and
capitalizing on forthcoming advancements in segmentation models. The justification for

selecting and evaluating the models presented in this study is based on their demonstrated

Dice Score [validation] Dice Score [validation]

Without Bias F2M 640x640

Branch 640x640 (Dice Score) (Dice Score)

lol Score [validation] lol Score [validation]
Without Bias F2M 640x640

Branch 640x640 (IoU Score) (IoU Score)

Total Errer [validation] Total Error [validation]

g . / i

Without Bias F2M 640x640

Branch 640x640 (Total Error) (Total Error)

Figure 3.4: Dice score progression during the validation phase for F2M and the Feature
Extraction Branch at a resolution of 640 x 640. The dark blue line represents the smoothed
outcome (60% smoothing), whereas the light blue line illustrates the recorded metrics. Image
source: Arlovic et al. [11].
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Figure 3.5: Graph showing the Monte Carlo dropout uncertainty across 100 iterations of
the same input image. Image source: Arlovic et al. [11].

efficacy in fire detection and associated segmentation tasks, including applications in
domains such as autonomous driving, remote sensing, and medicine. Introducing an
innovative neural network that can leverage existing models and replace them with
superior segmentation models would provide a sustainable framework for future fire
detection applications.

The F2M model created in this research can substantially improve fire detection and its
segmentation. The proposed Bias Branch enhances performance and stabilizes the training
process. The uncertainty estimation mechanism allows the development of an automated
picture annotation tool, optimizing the annotation process for extensive datasets. However,
a significant constraint of the model is its dependence on predictions of five distinct models,
which necessitates considerable computing resources. The computational demands of this
model would be substantial on an embedded device; nevertheless, there are two methods
to address this challenge. The initial approach involves reducing the model size by pruning
and by utilizing various optimization algorithms which maintain model performance while
improving efficiency. The alternative approach involves migrating the models to the cloud,
facilitating the transfer of images from sources such as cameras or robots via the internet.
Cloud computing facilitates the utilization of numerous GPUs, delivering sufficient processing

capacity to execute all models simultaneously. Employing one or both of these technologies
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Figure 3.6: The visualization of fire detection results illustrates the RGB input image, the
ground truth mask, the predicted mask at 33% threshold, the standard deviation (STD)
mask derived via the Monte Carlo dropout uncertainty estimate, and the final amalgamated
mask. The STD mask delineates regions of ambiguity in the forecasts. Image source: Arlovic

et al. [11].

61



might make real-time fire detection viable. The additional computational burden imposed by
F2M for real-time detection is negligible, as evidenced in table 3.4, requiring merely 333, 467

extra parameters.

3.4 Conclusion

Timely fire detection and fast alert dissemination are critical for minimizing risks to human
life and property. In response, numerous fire monitoring systems have been developed by
researchers, employing both sensor-based and image-based technologies. Image-based
systems present considerable advantages compared to sensor-based systems, as they deliver
more comprehensive information on fire more quickly - mainly location, intensity, and
spread. Accurately identifying the shape and boundaries of flames in images presents
challenges due to background interference, varying fire sizes, and objects that may resemble
flames. This study presents extensive benchmarks utilizing CNNs for fire segmentation in
indoor environments. We expanded upon previous studies by employing various advanced
neural network architectures and presenting a new model called the Feature Merge Model,
which integrates the outputs of multiple models to enhance accuracy and interpretability.
The model’s explainability was achieved using the Monte Carlo dropout mechanism. This
technique applies dropout during inference to obtain multiple predictions and their
associated uncertainties, thereby categorizing each pixel as fire or non-fire with a measure
of model confidence.

The F2M model consistently outperformed other neural networks in all tested resolutions,
showcasing its adaptability. F2M outperformed U-Net++ by 4.02% in the Dice Score at the
narrowest resolution (256 x 256), resulting in the most substantial improvement. In addition,
F2M demonstrated modest yet discernible enhancements in the 640 x 640 and 800 x 800
resolutions, with increases of 1.17% and 1.41%, respectively. The model also exhibited
a significant decrease in error rates, with a 24.8% decrease at a resolution of 256 x 256
and even larger decreases at higher resolutions. It is important to note that the model’s
performance on the validation set was consistent with that of the test set, indicating that

the model generalized well and did not overfit.
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Impact of Synthetic Data on Fire

Segmentation Models

This chapter introduces SYN-FIRE, a novel synthetic dataset focused on fire detection in
industrial environments. Compared to conventional methods, deep neural networks have
demonstrated superior performance in fire detection. However, their effectiveness relies on
the use of gold-standard datasets, which are essential for developing robust semantic
segmentation models. In Chapter 2, we discussed how the performance of deep learning
models relies on the availability of high-quality annotated data. We also examined the
challenges researchers face when creating such datasets. These include high annotation
costs, legal restrictions, and the general scarcity of data across many scientific fields,
especially in the field of indoor fire detection. Additionally, we reviewed several synthetic
datasets that have demonstrated promising results and highlighted their potential to help
overcome these limitations. To address these challenges, we developed SYN-FIRE, which
contains 2,000 annotated synthetic fire images generated using NVIDIA Omniverse. This
chapter begins by explaining the dataset generation process and reviewing current methods
used to produce synthetic data. We then present two ablation studies that evaluate the
impact of different synthetic-to-real data ratios on the performance of our segmentation
model.

This chapter is structured as follows. Section 4.1 outlines the primary objectives of the
research. Section 4.2 discusses the methods that can be employed for developing synthetic
data, followed by Section 4.3, which discusses the synthetic dataset of indoor fires in the

industrial environments, comprised of 2,000 labeled images. Section 4.4 describes the
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experimental configuration and explains the network training methodology. Section 4.5
outlines the ablation studies performed in this research, accompanied by the related
results, statistical analysis, and an evaluation of model generalization using previously
unseen real-world data. Section 4.6 presents research results for both ablation studies.
Section 4.7 provides statistical analysis of results using the Paired T-Test. Section 4.8
outlines results of model generalization trained on synthetic data, and tested on real

unseen data. Finally, Section 4.9 presents the final research observations.

4.1 Research Objectives

This research aims to create a synthetic dataset that replaces or supplements real data
for the semantic segmentation of indoor fires in industrial environments. Deep learning
models typically necessitate substantial datasets to attain effective generalization. The lack
of annotated datasets constrains the training and evaluation process of deep learning models.
To mitigate this challenge, we developed SYN-FIRE, an entirely synthetic dataset of indoor
fires utilizing NVIDIA Omniverse. Employing U-Net++ as the baseline architecture, we
trained the models on the SYN-FIRE synthetic dataset and evaluated their effectiveness
using four publicly available datasets of real fire images. The study comprises two ablation
experiments: one substitutes portions of real data with synthetic data, while the other
integrates varying amounts of synthetic samples into real data. The following outlines our

research objectives:

1. To generate a new synthetic dataset by incorporating a mixture of industrial

environments using the NVIDIA Omniverse.

2. To determine whether synthetic data is a viable alternative to real data and whether

it has a beneficial impact on the model training.

3. To assess whether the performance of segmentation models is improved when synthetic

data is incorporated in conjunction with real data.

4.2 Existing methods for synthetic data generation

This section discusses methods for creating synthetic data for deep neural network
training. Synthetic data is a preferred option for various applications because it accelerates
the training, testing, and deployment stages, thereby enhancing the efficiency and
effectiveness of deep learning model creation [117]. It also reduces the time required for
image capture and labeling, preserving user privacy and security and reducing the risk of
disclosing sensitive information [118|. Diverse techniques can be used for synthetic data

generation, including 3D computer graphics engines such as Blender [119]|, Unreal Engine
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5 [120], and NVIDIA Omniverse [121]|, as well as deep learning models such as Stable
Diffusion [122], Generative Adversarial Networks (GANs) [123|, and Variational
Autoencoders (VAEs) [124]. The quality of the generated images is often influenced by
multiple factors, including the ability to achieve realistic lighting and textures, the design

of effective prompts, and the hyperparameter optimization.

4.2.1 Image Generation Using 3D Software

The increased advancement of GPUs has enhanced the realism of scenes produced in 3D
applications like Blender, Unreal Engine 5 and NVIDIA Omniverse [125]. 3D tools require
precisely made 3D models and environments to produce synthetic images that closely mimic
real images. An in-depth understanding of scene lighting is essential for designers, as it
directly influences the fidelity of the visual depiction of the given scenario [12]. Synthetic
images generated by the NVIDIA Omniverse and Unreal Engine 5.3.2 are shown in Figure 4.1.

(d)

Figure 4.1: Comparison of rendered scenes in NVIDIA Omniverse (top row) and Unreal
Engine 5.3 (bottom row). Image source: Arlovic et al. [12].

Blender

Blender is a free and open-source software extensively utilized to create 3D graphics [119].
Blender, mostly utilized in computer graphics, allows the creation of photorealistic renders,
incorporating sophisticated features such as complex lighting, depth of field, volumetric
effects (e.g., fog and mist), and physically accurate reflections and refractions [126]. Blender
offers comprehensive support for the entire 3D pipeline which encompasses modeling, rigging,
animation, simulation, rendering, compositing, motion tracking, video editing, and game
development [119]. The software suite provides multiple rendering engines, each designed

for different levels of realism and computational efficiency. Cycles [127] can produce highly

65



photorealistic graphics, making it a favored engine for scenarios requiring precise simulations
of lighting and material interactions. As a physically-based path-tracing renderer, Cycles
simulates light behavior by tracing multiple rays per pixel throughout a scene. These rays
interact with surfaces based on their material properties, producing realistic effects such as
reflection, refraction, and light scattering [127]. The number of samples per pixel significantly
influences the accuracy and clarity of an image generated by Cycles [127]|. Low sample counts
produce noise, especially in regions dominated by indirect light, such as within shadows,
glossy reflections, and caustics. Meanwhile, more samples reduce noise and sharpen features.
Due to its ability to accurately replicate complex light interactions, Cycles is widely used
in visual effects, architectural visualization, and scientific simulations, where realism and
physical accuracy are essential. EEVEE [128] was created as a real-time alternative for
Cycles, providing improved versatility in its rendering pipeline. The main goal is to reduce
frame rendering times, hence enhancing animation production efficiency. EEVEE prioritizes
speed and interactivity while also accommodating high-quality physically based rendering
(PBR) materials [128]. EEVEE uses rasterization and screen-space techniques instead of
simulating individual light rays as path tracing does. Rather, it determines the visibility of
surfaces from the camera’s perspective and applies a variety of algorithms to approximate
the interaction of light with these surfaces and materials. Moreover, experienced users can
exploit the full Python programming capabilities available through the Blender API. This
powerful capability enables the modification of the program using the specialized tools,
which can also ease the integration with deep learning technologies [129, 130]. Using custom
plugins such as the Blender Annotation Tool [129], researchers can automate the process of
generating annotated synthetic datasets.

Karoly et al. [131] improved the Blender Annotation Tool to create a novel annotation
method for synthetic datasets. Their methodology automates the creation of multimodal
annotations, encompassing segmentation masks, depth maps, surface normals, and optical
flow across several scenarios. Consequently, they created the Synthetic Multimodal Video
Benchmark dataset, comprising of 1585 images from seven distinct scenarios spanning
various domains, including underwater environments, two-dimensional animation, and
photorealistic scenes. Detecting vehicles using aerial and satellite imagery is necessary for
traffic prediction, vehicle counting, and velocity assessment applications. In response to the
absence of appropriate publicly available datasets, Ori¢ et al. [132] created a synthetic
dataset containing 5000 labeled images with a resolution of 2048x2048 pixels. To obtain
realistic results, the authors created authentic road scenes in Blender using mapping
services such as Google Maps. They then populated these environments with 3D car
models. Dzijan et al. [133] developed a modular approach to generate single-view synthetic
depth images from 3D point clouds of indoor environments to train object detectors. Their
research showed that object detectors trained exclusively on synthetic data exhibit poor

performance compared to those trained on real data. Furthermore, they demonstrated that
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pretraining with synthetic data and later fine-tuning with real data slightly increases the

network’s performance.

Unreal Engine

Graphics and simulation capabilities of Unreal Engine 5 [120] improve synthetic data
creation for deep-learning applications [134]. Unreal Engine’s Nanite technology offers an
internal mesh format and rendering technique that adeptly manages extremely complex
geometry. This technology allows developers and researchers to create realistic and highly
detailed 3D environments in real-time. In contrast to conventional rendering methods,
Nanite does not depend on levels of detail (LOD) to regulate object complexity. It
dynamically streams geometric data, loading exactly what is required at any moment. This
method significantly streamlines the creation process while preserving superior visual
fidelity and performance [135|. Unreal Engine 5’s real-time rendering and dynamic lighting
solutions, such as Lumen, enable the creation of synthetic images and videos that closely
resemble real-life visuals [136]. Lumen is a real-time global illumination system that offers
high-quality lighting in 3D environments [135]. Eliminating time-intensive pre-calculations
enables developers and researchers to simulate indirect illumination promptly. The system
relies on voxel cone tracing to compute this indirect lighting, offering real-time feedback
during scene creation. It also supports advanced features such as accurate reflections,
refractions, and soft shadows while dynamically adapting to any changes in lighting
conditions. These features enable the building of immersive, lifelike settings without
compromising performance [137]. Path tracing is an alternative lighting solution in Unreal
Engine that uses a physically based rendering technique to simulate the complex
interactions of light rays with surfaces and materials. This primarily offline rendering
method is not limited by Lumen’s geometric simplifications and lighting approximations,
yielding more realistic and physically precise images, although at a somewhat higher
computational cost [136]. Unreal Engine also supports the light baking option. This
method includes precomputing lighting computations and storing them in specialized
textures called lightmaps, significantly reducing rendering complexity during runtime. A
significant development in this domain is GPU Lightmass (GPULM), which enhances the
conventional CPU-based Lightmass Global Ilumination through GPU acceleration.
GPULM proficiently computes complex lighting interactions from stationary lights, saving
the precomputed outcomes in created lightmap textures directly applied to the scene
geometry. GPU Lightmass markedly decreases the creation and computation duration for
lighting data compared to CPU-based alternatives, achieving velocities akin to distributed
CPU-based builds. Furthermore, GPULM enables an interactive workflow, allowing
developers to execute real-time scene modifications and swiftly recalculate lighting data, a

capability unattainable with the conventional CPU-based Lightmass system [138§].
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Due to the scarcity of real-world fire datasets, researchers are increasingly developing
synthetic datasets to facilitate the training of high-performing fire detection models. Hu
et al. [139] introduced a synthetic dataset called FireFly, developed for ember detection in
wildfires, produced using Unreal Engine 4. The dataset comprises of 19,273 images, including
16,904 positive samples containing embers and 2,369 negative samples missing embers. The
FireFly dataset was evaluated using four object detection methods. Models trained on the
FireFly dataset demonstrated an enhancement of up to 8.57% in mean average precision
(mAP) for real wildfire scenarios, in contrast to models trained solely on a limited real-world
dataset. Fernando et al. [140] used Unreal Engine 5 to develop a Simulated Wildfire Images
for Fast Training (SWIFT) dataset. The dataset consists of 70,000 images and 15 videos
of wildfire scenarios collected from multiple viewpoints. Moreover, the authors assessed the

dataset on three deep-learning models for wildfire classification.

NVIDIA Omniverse

The NVIDIA Omniverse [121] is a versatile computer graphics platform designed to
enhance collaborative operations in both industrial and creative domains. It can generate
physically accurate synthetic 3D scenes that are automatically annotated and ready to use
for learning machine-learning models. NVIDIA Omniverse features two primary rendering
methods: RTX - Real-Time and RTX - Interactive (Path Tracing), which are designed to
meet the diverse requirements of visual fidelity and performance. Real-Time Mode utilizes
advanced real-time ray tracing techniques to handle more complex geometries and achieve
improved material quality relative to conventional rasterization methods. This method
involves separating the lighting calculations into separate passes, including ray-traced
ambient occlusion, direct lighting with ray-traced shadows, indirect diffuse global
illumination, reflections, translucency, and subsurface scattering. The renderer can
eventually integrate these elements into the final image by cautiously denoising each pass.
This method may introduce approximations and optimizations that significantly reduce
physical realism, yet it delivers a responsive, high-frame-rate experience essential to
interactive apps and real-time workflows. In contrast, the main objective of the interactive
mode is to attain the highest level of visual accuracy and photorealism. By methodically
tracing light paths across the scene, each frame is generated to encompass contributions
from all possible interactions. After a single path-tracing run that gathers accumulated
illumination data, the renderer utilizes an Al-accelerated denoiser, followed by
post-processing procedures like bloom and tone mapping. This mode generally achieves
more precise lighting and material representations; nevertheless, it requires increased
computational resources, often resulting in lower framerates than RTX -Real-Time mode.
Depending on their project needs, these rendering modes allow researchers to choose

between interactive performance and unparalleled image quality. Researchers can use the
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Replicator SDK to generate physically accurate, labeled 3D synthetic data to train and
validate AI perception models. The Replicator SDK can generate synthetic data for
multiple perceptual tasks, such as object detection, segmentation, pose estimation, and
depth estimation, utilizing a physically correct camera placement [141].

NVIDIA Omniverse is a new software, and a few datasets have been generated. Conde
et al. [142] introduced a methodology executed within the NVIDIA Omniverse platform to
generate and validate synthetic datasets based on real-world scenarios. The authors
employed Replicator SDK to produce RGB images accompanied by labels for semantic
segmentation or object detection. In our research, we used NVIDIA Omniverse to develop
the SYN-FIRE dataset, the first synthetic dataset of indoor fires. Using this software, we
created multiple industrial environments. We initiated fires with the NVIDIA PhysX
physics engine, which produced realistic fire and smoke under physically grounded
parameters, enabling high-quality imagery for future research and development of robust

deep learning models for fire detection.

4.2.2 Image Generation Using Deep Learning Networks

A Generative Adversarial Network (GAN) is a deep learning framework composed of two
neural networks, the generator and the discriminator, which are trained concurrently in an
adversarial manner [123]. The generative model (G(z)) attempts to learn and replicate the
distribution p, over data z. The primary objective is to generate new data samples by
transforming random noise p,(z) into meaningful outputs that are not direct duplicates of
the authentic data but rather capture its key characteristics. The discriminator model
(D(z)) receives the generator output and real images from the training dataset [123].
D(z) represents the probability that = came from the training dataset rather than p,. The
discriminator model is trained to maximize the probability of assigning the correct label to
training examples and samples from G [143].

Diffusion models are generative models designed to generate data mimicking training
dataset samples. Their main goal is to estimate the underlying data distribution p(z) by
progressive denoising a normally distributed variable through a sequence of iterative
enhancements [12|. This approach is mathematically analogous to acquiring the inverse of
a predetermined Markov chain with a predefined length T' [144]. Their capacity to produce
high-quality and various outputs has led to widespread adoption in text-to-image
generation, including advanced models like DALL-E and Stable Diffusion. In recent years,
diffusion models have gained recognition as a viable alternative to GANs, mainly because
of their ability to address specific limitations in GAN architectures. The primary challenge
of GANSs is mode collapse, a case where the model produces a restricted range of outputs,
reducing its efficiency in practical applications [145]. Diffusion models fundamentally

generate variations of samples via their iterative denoising process, rendering them a
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resilient and dependable option for various generating tasks.

In recent years, there has been a substantial increase in the use of artificial intelligence
to generate synthetic images. Islam i Zhang [146| introduced a GAN-based approach for
creating synthetic brain PET images. They addressed the challenge of restricted medical
images for normal control (NC), mild cognitive impairment (MCI), and Alzheimer’s
disease. Visual inspection and quantitative metrics like peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) were used to evaluate synthetic images. Adding
synthetic data to a diagnostic classifier enhanced Alzheimer’s disease diagnosis from
normal control cases. Abduljawad i Alsalmani [147] evaluated the ability of diffusion
models to generate satellite, Synthetic Aperture Radar (SAR), and passive microwave
images, which are essential but challenging to obtain through conventional methods.
Dall-E 2 consistently generated the most realistic and accurate results among the Al
models the authors tested, particularly in generating visible-band images. Nathanail [148|
successfully generated 1200 realistic synthetic images across six distinct fossil categories by
fine-tuning the Stable Diffusion model in conjunction with the DreamBooth technique. In
the domain of geoscience, this dataset is a valuable resource for the training and evaluation
of image -classification and object detection models, facilitating tasks such as the
automated interpretation of depositional environments. Figure 4.2 displays the synthetic
images produced by the DALL-E 3 in the first row, the Stable Diffusion XL v1.0 in the
second row, and the ChatGPT 4o in the third row. Each row corresponds to one model,
and each column to a shared text prompt. Prompt 1: A small fire with smoke in a
warehouse containing batteries, no people, high-quality, 8k, indoor, filmed on a Sony ATiii,
50mm, f2.8, realistic appearance similar to an iPhone photo. Prompt 2: A small fire with
smoke in a factory scene, high-quality, 8k CCTV photo. Prompt 3: A small fire with
smoke in a factory scene, CCTV, no people, high-quality, 8k, indoor.
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Prompt 1 Prompt 2 Prompt 3

Figure 4.2: Qualitative comparison of images generated by three diffusion-based models:
DALL-E 3, SDXL 1.0, and ChatGPT 4o. Image source: Arlovic et al. [12].
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4.3 SYN-FIRE Dataset

Due to the private nature of industrial environments and privacy concerns, the field of
fire detection has a limited number of publicly available datasets. Most publicly available
fire detection datasets [104, 105, 149, 150] are based on outdoor areas, but not on indoor
industrial environments. In this study, we developed a new synthetic dataset of indoor fires
in industrial environments, SYN-FIRE [5], using the NVIDIA Omniverse platform. Certain
assets were developed exclusively in Omniverse, while others were obtained from the Unreal
Marketplace and transformed into Omniverse using the NVIDIA Unreal Engine 5 connector.
In these environments, a drone’s route is simulated as it moves from a higher viewpoint to
a lower one, with variable light conditions. Additionally, the camera angles are designed to
simulate security camera viewpoints. The virtual camera used a perspective projection with
an effective focal length of about 18.15 millimeters and sensor apertures of 20.955 by 15.2908
millimeters, which yields fields of view of approximately 60 degrees horizontally and 45.7
degrees vertically, with depth of field disabled. The camera was autonomously rotated and
moved for each frame using Omniverse Replicator SDK, resulting in the capture of images
and the assignment of semantic annotations to specific objects. The SYN-FIRE dataset
comprises of 2,000 labeled images, each 1920 by 1080 pixels, depicting simulated indoor
industrial fires across five distinct settings, with labels marking the fire in each image [5].
We used the PhysX fire particle system, which is configured to capture indoor fire behavior
with realistic fidelity, using a temperature parameter near 0.15, a fuel fraction around 0.8,
a temperature coupling of 10, and a moderate fuel coupling. To simulate indoor conditions,
we enabled burn and lowered the smoke density, thereby aligning the plume behavior with
confined-space dynamics. This setup produces sustained combustion, credible buoyant rise,
visible smoke stratification beneath ceilings, and natural plume meandering with convincing
light attenuation, which together yield sequences that align well with observed indoor fire
dynamics. Collision primitives were introduced for the pallets and boxes to eliminate sub-

surface combustion and ensure flames evolve along the exterior boundaries of objects.

4.3.1 Environments

Five indoor industrial environments were constructed to span representative layouts and
operating conditions. Each scene targets factors relevant to fire detection, including aisle
geometry, occlusion from shelving and machinery, material diversity, reflective surfaces,
clutter density, and the presence of moving equipment. Illumination varied by fixture type,
intensity, and placement, and included simulated firelight, resulting in a broad range of
contrasts and color temperatures. Camera viewpoints emulate surveillance and aerial
inspection, with elevations ranging from overhead to eye level, and oblique angles that

create long sight lines. These choices yield complementary difficulty profiles that support
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generalization across diverse indoor industrial sites.

The following subsections provide a detailed description of the five environments:
Modular Warehouse, Sorting Warehouse with Conveyor Belts and Robots, Garage,
Warehouse with Various Sections, and Metro Maintenance Station. Each environment is

presented in its own subsection.

Modular Warehouse

A warehouse environment was created to replicate the characteristics of a real-world
industrial environment. Utilizing a customized plugin within the NVIDIA Omniverse
platform, this environment was entirely generated using procedural methods. The creation
process involved the structured integration of NVIDIA’s proprietary assets to maintain
alignment with spatial and material characteristics commonly found in real-world
warehouse facilities. Additionally, dynamic elements such as fire and smoke were also
incorporated into the environment through procedural generation techniques. Each
iteration of generating the environment introduced modifications to both lighting
conditions and the visual and structural variations of the assets used. This iterative
variability was essential for generating a diverse dataset of warehouse scenes under varying
operational and atmospheric conditions. Approximately 20 distinct asset types were
employed during the environment generation process. These assets included common
warehouse components such as boxes, shelving units, and forklifts. Each asset was varied in
geometry and placement across iterations to enhance the realism and complexity of the
generated scenes. The procedural method ensured that every version of the warehouse
environment presented a unique spatial arrangements and lighting setups. Figure 4.3

presents sample images contained in SYN-FIRE dataset.

Sorting Warehouse With Conveyor Belts & Robots

The sorting warechouse environment was created to simulate a realistic industrial logistics
setting using NVIDIA Omniverse. Within this scene, shelves, robots, and conveyor belts are
manually positioned to resemble the structure of an actual facility. Although these main
components are arranged by hand, fire and smoke elements are generated procedurally.
Each iteration looks different, with fire and smoke behaving and appearing in new ways,
making the results feel more realistic. Lighting is deliberately changed each iteration in
addition to the artificial sources (e.g., lighting from the robots). This variety helps create a
more diverse dataset, which is useful for testing how models perform under different visual
conditions. Sample visuals from SYN-FIRE’s Sorting Warehouse with Conveyor Belts &

Robots environment are shown in Figure 4.4.
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Figure 4.4: Synthetic image samples for the Sorting Warehouse With Conveyor Belts &
Robots environment.

Garage

We used a garage environment obtained from the Epic Games Marketplace [151]. Although
it was created for Unreal Engine 5, we successfully imported it into NVIDIA Omniverse

using NVIDIA plugins. The garage contains storage cabinets, tools, and other essential
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items that are typically found in a functional garage. These objects consist of toolboxes,
tires, paint cans, wall-mounted storage systems, workbenches, and smaller hand tools that
are scattered across the garage. The arrangement of objects in the room is intentionally
designed to resemble a realistic and lived-in workspace, with a particular emphasis on
physical authenticity, wear, and clutter. All elements within the environment, including
props and particle effects such as fire, were manually positioned. This approach enables a

higher level of artistic control and ensures visual authenticity. The images in the dataset

are rendered with and without interior lights. Figure 4.5 displays image samples from
SYN-FIRE’s Garage environment.

Figure 4.5: Synthetic image samples and their annotations for the Garage environment.

Warehouse With Various Sections

The multi-compartment warehouse environment is a customized scene with multiple
interconnected sections, each with its unique asset arrangements and shelving
configurations. This environment, purchased from the Epic Games Marketplace, offers a
high degree of visual fidelity and realism. In contrast to the Modular Warehouse and
Sorting Warehouse with Conveyor Belts & Robots, this warehouse employs customized
warehouse assets rather than NVIDIA assets. Every compartment has been organized
differently, with shelves positioned in various places and sizes. Some compartments appear
organized with a regular warehouse layout, while others are disorganized, with boxes,
papers, and other items scattered throughout the room. Every object in the scene,

including shelves, boxes, crates, and ambient elements like fire, was placed manually. This
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deliberate positioning enabled greater control over the visual composition of each area,
allowing each compartment to have a distinct character and function. Image samples from

SYN-FIRE’s Warehouse with Various Sections environment are shown in Figure 4.6.

Figure 4.6: Synthetic image samples and their annotations for the Warehouse With Various
Sections environment.

Metro Maintenance Station

The underground metro station features two parallel tunnels lit by warm orange lighting
embedded inside the tubes, creating a soft, focused glow. The rest of the station remains
largely in shadow, with minimal natural light entering through small upper windows. All
environment objects were placed manually to ensure precise scene composition. Fire and
smoke were then added as separate, clearly defined elements to simulate realistic combustion
events. This setup is designed specifically for a synthetic fire dataset, allowing models to
learn the visual distinction between ambient orange lighting and actual fire. Figure 4.7
illustrates sample images from SYN-FIRE’s Metro Maintenance Station environment.

For annotating generated images, we employed the U-Net++ model trained on real
images. A human-in-the-loop (HITL) approach was introduced to ensure accurate
pixel-level annotations. By involving human intelligence in the annotation process, its
input supported the system in the handling of uncertain or complex data, resulting in more
precise annotations. Automation became more adaptable and reliable as it was enhanced
by expert insight. The quality of annotated data has been improved by the integration of
human expertise with machine learning. Although the HITL approach offers distinct

benefits, such as flexibility, speed, and accuracy, it also has certain disadvantages. Relying
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Figure 4.7: Synthetic image samples and their annotations for the Metro Maintenance
Station environment.

on human input can result in inconsistencies and a slowdown of the annotation process, as
different individuals may make different decisions. Furthermore, scaling HITL systems can
be resource-intensive, particularly when manual evaluation of large quantities of data is
necessary. The HITL approach in the annotation process, which involves a single human
expert overseeing the procedure, substantially accelerates the annotation timeline despite

these challenges.

4.3.2 Dataset Statistics

The SYN-FIRE dataset comprises of 2,030 labeled images that depict simulated indoor
industrial fires in five distinct environments. All images in the dataset are 1920 x 1080 in
resolution and have been split into two subsets: 1,402 for training and 601 for validation. The
scene’s complexities are diverse since every place varies in time of day, camera perspective,
and fire characteristics. The dataset shows a substantial imbalance, with warehouse scenarios
represented in 89.22% of the images, which is 74.36 times more frequent than the least
common Metro Station scenario. Notably, the Modular Warehouse makes up 80.55% of the
dataset, while the Metro Station contributes only 1.08%. To capture a variety of lighting
conditions, 27.93% of the images were taken at night or during sunset. The analysis of fire
occurrences reveals that flame sizes vary significantly, with an average diameter of 2,979.85
pixels and an average of 2.37 fire instances per image.The analysis of fire sizes and counts

per image for all five scenarios and the total number of images per scenario are summarized
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in Table 4.1.

Table 4.1: Statistics for the SYN-FIRE dataset, highlighting the number of images per
scenario.

Scenario N Images Avg. Flame Avg. N Of Fires

In Scenario Size On Images

Modular Warehouse 1636 2985.48 + 2422.394 2.45 4 2.166
Sorting Warehouse With

Conveyor Belts & Robots 96 584.21 £ 170.939 1.42 4+ 0.795

Garage 100 1645.96 4 658.509 1.94 £+ 1.398

Warehouse Divided Into 176 1645.96 =+ 658.509 1.94 + 1.398

Various Sections
Metro Station 22 439.46 4 65.357 1.65 £ 1.493

4.4 Implementation Details

In this section, we provide a brief overview of network implementation and training for the
U-Net++ network used in our experiments. Following that, a description of the real dataset

used to assess the impact of synthetic datasets on model performance was provided.

4.4.1 Experimental Setup

To evaluate the impact of synthetic data on model performance, we trained the U-Net++
network at resolutions of 128 x 128, 256 x 256, and 512 x 512 to enable seamless
integration into the Internet of Things (IoT) networks for deployment on compact cameras.
U-Net++ [94] is an encoder-decoder network featuring densely interconnected and
hierarchically nested decoder sub-networks. These are designed to minimize discrepancies
between the high-resolution representations of the decoder and the spatial features
captured by the encoder. The resnext50 32x4d backbone was trained from scratch for 200
epochs in conjunction with an early stopping mechanism to mitigate model overfitting with
a 30-epoch patience. We opted to train from scratch to avoid any biases that might arise
from using pretrained weights. Automatic Mixed Precision was also used to optimize
memory usage and speed training. Moreover, to mitigate the risk of overfitting and
improve generalizability, the AdamW optimizer was implemented with a weight decay of
1073, Lastly, the Binary Cross Entropy loss function and backpropagation measured the
divergence between predicted segmentation maps and their corresponding ground truth

masks.
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4.4.2 Real Data Datasets

To ensure the reproducibility and reliability of our research results, we tested models using
publicly available fire datasets suitable for semantic segmentation. This cross-dataset
evaluation allowed us to assess the practical utility of synthetic data for fire detection in
real-world scenarios. A brief description of used datasets is given in the concluding part of

the subsection. The main characteristics of the datasets are summarized in Table 4.2.

Dataset Purpose N Images in N Images in N Images in

training set validation set test set
Corsican FireDB [104] Wildfire 624 171 340
FLAME [107] Wildfire 1402 300 301
FireBot [19] Indoor 1402 601 1986
BowFire [105] Wildfire 180 22 24
SYN-FIRE Indoor 1402 601 -

Table 4.2: Statistics of real data datasets that utilized in the experiment.

In addition to the SYN-FIRE dataset, we also considered the FireBot dataset, since
SYN-FIRE was designed with its structure and objectives in mind. However, the FireBot
dataset is not publicly available due to copyright restrictions and was not used in our
experiments. Instead, we relied on publicly available datasets, including Corsican FireDB,
FLAME, and BowFire, which are commonly used for outdoor fire segmentation. We aimed
to investigate whether a synthetic dataset such as SYN-FIRE could deliver comparable or
improved performance in classification and segmentation tasks. The FireBot [19] dataset
was developed to advance research on fire detection in indoor industrial environments, with
a focus on image segmentation tasks. The dataset comprises 12,000 RGB images, all
annotated at the pixel level, to enable comprehensive model training and evaluation.
The Corsican Fire Database [104] comprises of 500 RGB images of fires, 100 RGB and NIR
images captured simultaneously, and five sequences of RGB and NIR image pairs. The NIR
images in this set are obtained with a longer exposure time, enhancing the brightness of
fire regions and allowing segmentation through basic image processing algorithms. All
images are annotated at the pixel level and appropriate for developing semantic
segmentation models. The FLAME dataset [107] comprises of annotated images of
regulated fires within a pine forest in Arizona. The dataset consists of images from RGB
and IR cameras. The dataset is intended for image classification and segmentation
applications. It consists of 39,375 labeled RGB images in the training subset and 8,617 in
the test subset for image classification. Moreover, 2,003 images have pixel-level
annotations, making them appropriate for training and evaluating image segmentation
algorithms. The BoWFire [105] dataset was created to facilitate research in fire detection
from stationary images, emphasizing the combination of color and texture data. The

dataset has 226 images depicting real fire incidents, including structural fires, vehicular
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collisions, wildfires, and civil disturbances. @ The dataset is labeled to enable the

classification and segmentation of fire images.

4.5 Experiments

To evaluate the potential advantages and disadvantages of utilizing synthetic data for fire
detection, we trained various U-Net++ models on the previously described datasets. During

the study, two research hypotheses were formulated to guide the experimental evaluation:

1. Synthetic data is a feasible alternative to real data and positively impacts model

training.

2. The integration of synthetic data enhances the effectiveness of segmentation models

when utilized with real data.

We evaluate these hypotheses with two ablation studies conducted on each dataset.

4.5.1 Ablation Study 1

The objective of this ablation study was to assess the impact of the correlation between
synthetic and real data on model performance by replacing a portion of real data with
synthetic images. The training and validation datasets comprise both real and synthetic
data. The number of images in the observed dataset determines the number of real images
N, and synthetically generated images N,. The ratio of images sampled from Ny and N, in
the training subset is determined by the parameter a. Consequently, the following equation

is used to show the total number of images in the training subset N;:
Ny=ax N, + (1 —a)x N; (4.1)

With « set at 0.2, the training subset was generated by randomly picking 20% of images from
real data and 80% from synthetic data. The subset contained a total of 1,402 images from

the Flame dataset. Figure 4.8 shows the data allocation flowchart for the training subset.

4.5.2 Ablation Study 2

The objective of this ablation study was to evaluate the impact of synthetic data on the
model’s effectiveness when combined with real data. The following equation is used for

calculating the number of images in the training subset:

N, = N, + 8 x N, (4.2)
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Figure 4.8: The flowchart depicts the process of data allocation for the training subset in
the first ablation study when the a = 0.2. Image source: Arlovic et al. [5].

The quantity of real data is denoted by NV, the quantity of synthetic data is denoted by Ny,
and the proportion of synthetic data in the training subset is determined by . The training
subset was generated by randomly selecting 10% of synthetic data and combining it with
100% of real data, with 3 set to 0.1. A total of 1,822 images comprised the training subset
from the FireBot dataset. The data allocation flowchart for the training subset is depicted
in Figure 4.9.

FIREBOT
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New Train
Nr = 1402 Subset
Nt = 1542
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Figure 4.9: The flowchart depicts the process of data allocation for the training subset in
the second ablation study when the § = 0.1. Image source: Arlovic et al. [5].

81



4.6 Results

To assess the performance of trained segmentation models across all ablation studies, we used
the Dice Score, [oU Score, and Total Error as primary metrics. The models were trained using
both publicly available datasets and the proposed SYN-FIRE dataset. The test subsets were
evaluated using the thresholds that performed the best on their corresponding validation
subsets. Figure 4.10 shows how synthetic data affects U-Net++ model training, using four

randomly selected samples from the BowF'ire dataset to provide qualitative results.

Input Image Ground Truth

U-Net++ U-Net++
(100% Real Data)

-~
5.

Figure 4.10: The U-Net++ model performance is demonstrated on four randomly selected
samples from the BowFire dataset. Image source: Arlovic et al. [5].

.

The Tables 4.3 to 4.6 present experiment results that aimed to understand how
substituting real with synthetic data during training impacts the performance of a
semantic segmentation model. The Real Data parameter in the table indicates the
percentage of real data a present in the training subset. The Tables 4.7 to 4.10 show the
results of an experiment that investigated the influence of using synthetic data in model
training alongside the maximum available real data. The parameter Synthetic Data in the
table represents the percentage of synthetic data 8 added to the original dataset, consisting

entirely of real data.
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Table 4.3: Results of training the model on the validation and test subsets of the Corsican
Fire Database dataset. The underlined results represent the baseline results from the model

trained with o« = 1.

Validation Dataset

Test Dataset

Resolution Real Thres- Dice IoU Total Dice IoU Total
Data  hold Score Score Error Score Score Error
0% 10% 0.050  0.042 0.03156 0.096  0.081 0.05659
10% 10% 0.179  0.230 0.02222 0.252  0.561 0.03931
20% 10% 0.694 0.610 0.01135 0.606  0.693 0.03511
30% 10% 0.811  0.819 0.00523 0.643  0.801 0.03125
40% 20% 0.841  0.858 0.00422 0.728  0.800 0.03197
128 x 128 50% 10% 0.838  0.868 0.00374 0.736 0.818 0.03151
60% 10% 0.784  0.827 0.00449 0.675  0.787  0.03194
70% 20% 0.820 0.813 0.00519 0.696  0.768 0.03254
80% 20% 0.858 0.862 0.00398 0.731 0.821 0.03147
90% 20% 0.772  0.796 0.00606 0.577  0.541 0.03797
100% 30% 0.879  0.884 0.00412 0.810 0.827  0.03198
0% 10% 0.069  0.059 0.0298 0.144 0.114 0.05478
10% 10% 0.725  0.698 0.00915 0.624  0.740 0.03392
20% 10% 0.764  0.764 0.00721 0.719  0.750 0.03403
30% 20% 0.834  0.854 0.00423 0.749  0.767  0.03306
40% 20% 0.860  0.868 0.00365 0.755  0.825 0.03125
256 x 256 50% 10% 0.854  0.901 0.00256 0.747  0.840 0.03062
60% 20% 0.891 0.906 0.0029 0.810 0.806 0.03186
70% 20% 0.851  0.851 0.00449 0.750  0.788 0.03246
80% 20% 0.858  0.872 0.00397 0.752  0.756 0.03332
90% 20% 0.875  0.879 0.00336 0.787  0.795 0.03195
100% 30% 0.893  0.905 0.00318 0.835  0.840 0.03165
0% 10% 0.059  0.047  0.03084 0.155 0.114 0.05503
10% 10% 0.679  0.606 0.01113 0.729  0.749 0.03436
20% 20% 0.811  0.782 0.00676 0.779  0.795 0.03286
30% 30% 0.921  0.923 0.00274 0.840  0.819 0.03206
40% 20% 0.868  0.875 0.00363 0.787  0.777  0.03265
512 x 512 50% 40% 0.930  0.932 0.00236 0.845 0.807  0.03218
60% 40% 0.933 0.927 0.00248 0853 0.819 0.03197
70% 40% 0.927  0.920 0.00267 0.852  0.813 0.03208
80% 30% 0.930  0.933 0.00209 0.862 0.850 0.03096
90% 30% 0.931 0917 0.00261 0.861  0.847  0.03125
100% 40% 0.936  0.930 0.00239 0.866  0.837  0.03148

4.6.1 Corsican Fire Database

The model trained on the Corsican Fire Database exhibited the least effective performance

on both the validation and test subsets when the dataset was partitioned into three segments

with the following distribution: 55% for training, 15% for validation, and 30% for testing.

After evaluating the impact of synthetic data on model training as a replacement for real

data, it was observed that a model trained using synthetic data had a decrease in performance
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Table 4.4: Results of training the model on the validation and test subsets of the FLAME
dataset. The underlined results represent the baseline results from the model trained with
a=1.

Validation Dataset Test Dataset

Real Thres- Dice IoU Total Dice IoU Total
Data hold Score Score Error Score Score Error

0% 100% 0.000  0.000  0.00305  0.000  0.000  0.00359
10% 10% 0.215 0.204 0.00236  0.458  0.575  0.00164
20% 10% 0.040 0.026  0.00293  0.257  0.200  0.00293
30% 10% 0.495 0.501  0.00153  0.542 0.654  0.00131
40% 20% 0.588 0.578  0.00129  0.585  0.631 0.00135
128 x 128 50% 20% 0.637 0.614 0.00120 0.648 0.638  0.00132
60% 10% 0.574  0.690  0.00095  0.571  0.711 0.00106
70% 20% 0.622 0.631  0.00115 0.641  0.688  0.00111
80% 20% 0.632 0.593  0.00128  0.660 0.694  0.00108
90% 20% 0.604 0.564 0.00134 0.678 0.693 0.00111
100% 30% 0.707  0.689  0.00096  0.703  0.702  0.00109

0% 10% 0.001  0.000  0.00295  0.000 0.000  0.00349
10% 10% 0.537  0.467  0.00152  0.630 0.653  0.00125
20% 10% 0.559 0476  0.00157  0.672 0.672  0.00116
30% 10% 0.605  0.575  0.00133  0.683  0.743  0.00088
40% 20% 0.660 0.654  0.00109  0.729  0.743  0.00091
256 x 256 50% 20% 0.681 0.671  0.00102  0.738  0.755  0.00085
60% 20% 0.704  0.695  0.00095 0.744 0.729  0.00097
70% 30% 0.725 0.702  0.00095  0.760  0.743  0.00086
80% 20% 0.723 0.739  0.00085  0.746  0.772  0.00078
90% 30% 0.751 0.758 0.00074 0.771 0.788 0.00071
100% 30% 0.767  0.7v52  0.000v3  0.781  0.764  0.00079

0% 10% 0.018  0.009  0.00301 0.012 0.006  0.00355
10% 10% 0.693 0.648 0.00113  0.745 0.839  0.00056
20% 20% 0.613 0526  0.00139  0.572  0.480  0.00188
30% 20% 0.748 0.694  0.00098  0.802 0.836  0.00059
40% 20% 0.739  0.693  0.00102  0.808 0.854  0.00055
512 x 512 50% 10% 0.749 0.774  0.00078  0.814  0.905  0.00034
60% 30% 0.776¢  0.779  0.00074  0.812 0.892  0.00040
70% 30% 0.783 0.753  0.00083 0.838 0.855 0.00054
80% 20% 0.798  0.793  0.00072  0.835 0.873  0.00045
90% 20% 0.807 0.824 0.00060 0832 0.894  0.00037
100% 30% 0.829 0.841  0.000560  0.831  0.890  0.00041

Resolution

of 9.14% on a test subset with a resolution of 128 x 128 when 50% real data was employed.
Utilizing 60% of the real data resulted in a performance loss of 2.99% at a resolution of
256 x 256. After increasing the resolution to 512 x 512, the model exhibited a marginal
performance decline of 0.46%, utilizing 80% real data. The results from the ablation study
aimed at evaluating the initial hypothesis, utilizing the Corsican FireDB dataset, are shown

in Figure 4.11a and Table 4.3. Upon evaluating the impact of incorporating synthetic data
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Table 4.5: Results of training the model on the validation and test subsets of the FireBot
dataset. The underlined results represent the baseline results from the model trained with

a=1.
Validation Dataset Test Dataset
Resolution Real Thres- Dice IoU Total Dice IoU Total
Data hold Score Score Error Score Score Error
0% 10% 0.443  0.586 0.0080 0.386  0.493 0.01188
10% 10% 0.583  0.711 0.00778 0.507  0.603 0.01146
20% 20% 0.597  0.708 0.00594 0.526  0.602 0.00908
30% 20% 0.661 0.762 0.00548 0.577  0.658 0.0101
40% 20% 0.691 0.788 0.00502 0.601 0.676 0.00935
128 x 128 50% 30% 0.710  0.756 0.00546 0.611 0.641 0.00973
60% 30% 0.634  0.666 0.00977 0.634  0.666 0.00977
70% 30% 0.741 0.806 0.00377 0.642  0.700 0.00729
80% 30% 0.740  0.797 0.00472 0.658 0.700 0.00732
90% 30% 0.7583 0.795 0.00386 0.657 0.693 0.00662
100% 30% 0.764  0.823 0.00318 0.674 0.721 0.00535
0% 10% 0.498  0.568 0.00897 0.439  0.485 0.0128
10% 20% 0.607 0.684 0.00835 0.516  0.579 0.01286
20% 20% 0.708  0.804 0.00485 0.611 0.674 0.0094
30% 20% 0.741 0.814 0.00427 0.642  0.699 0.00868
40% 30% 0.775  0.809 0.00462 0.662  0.686 0.00862
256 x 256 50% 30% 0.774  0.806 0.00390 0.660  0.680 0.00786
60% 30% 0.789  0.822 0.00392 0.678  0.701 0.00804
70% 30% 0.794  0.854 0.00296 0.690 0.732 0.00625
80% 30% 0.801 0.846 0.00313 0.709 0.736 0.00651
90% 30% 0.800  0.837 0.00278 0.703  0.729 0.00580
100% 30% 0.808  0.831 0.00275 0.714 0.727 0.00554
0% 10% 0.586  0.655 0.00912 0.493  0.549 0.01256
10% 20% 0.682  0.769 0.00783 0.598  0.649 0.01181
20% 20% 0.742  0.838 0.00433 0.671 0.736 0.00433
30% 20% 0.784  0.855 0.00342 0.671 0.736 0.00764
40% 30% 0.823  0.837 0.00423 0.730  0.731 0.00742
512 x 512 50% 30% 0.827  0.840 0.00365 0.736  0.746 0.00683
60% 30% 0.840  0.860 0.00304 0.750  0.764 0.00643
70% 30% 0.845  0.868 0.00288 0.763  0.777 0.00574
80% 30% 0.831 0.871 0.0026 0.756  0.779 0.00547
90% 30% 0.847 0.890 0.00229 0.776 0.808 0.00447
100% 30% 0.853  0.884 0.00244 0.777  0.797 0.00484

with real data for model training, we observed that the Dice Score of the model trained

with synthetic data remained constant. However, employing a resolution of 128 x 128 and

an additional 60% of synthetic data did not improve the Dice Score metric. Conversely, the
model’s IoU Score on the test subset exhibited a decline of 0.7%.

In contrast, utilizing 100% synthetic data at a resolution of 256 x 256 resulted in a model

performance increase of 0.59%. Furthermore, when the model was evaluated at a resolution

85



Table 4.6: Results of training the model on the validation and test subsets of the BowFire
dataset. The underlined results represent the baseline results from the model trained with
a=1.

Validation Dataset Test Dataset
Resolution Real Thres- Dice IoU Total Dice IoU Total
esotutio Data hold Score Score Error Score Score Error

0% 30% 0.354  0.427 0.0121 0.319  0.451 0.01325
10% 30% 0.375  0.352  0.02433  0.364  0.362 0.02119
20% 30% 0.343 0.399  0.01475  0.347  0.401 0.01711
30% 20% 0.392 0.457 0.00881  0.386  0.527 0.00754
40% 30% 0.312  0.389 0.0141 0.284  0.372 0.01471
128 x 128 50% 20%  0.415 0.486 0.00747 0.421 0.519 0.00731
60% 30% 0.307  0.300  0.02242  0.272  0.239 0.02355
70% 20% 0.405 0.447  0.01077  0.382  0.472 0.0115
80% 20% 0.357 0.362  0.01507  0.326  0.380 0.01582
90% 40% 0.412 0.398  0.01967  0.379  0.355 0.02121
100% 20% 0.413 0.480 0.00643 0.382  0.453 0.01085

0% 40% 0.395 0450 0.00814  0.403  0.495 0.00897
10% 20% 0.422 0432 0.01379 0418  0.457 0.01589
20% 30% 0.443 0.468  0.00916 0.422 0.439 0.01097
30% 20% 0.412 0416  0.01414 0379  0.391 0.01906
40% 20% 0.417 0438 0.01148 0.393  0.438 0.01244
256 x 256 50% 20% 0.421  0.426 0.0103 0.382  0.407 0.01231

60% 20% 0.440  0.499 0.0058 0.410 0.521 0.00772
70% 30% 0.453 0.482 0.00858  0.412  0.498 0.00969
80% 30% 0.456 0.461 0.01081 0.414 0438 0.01207
90% 20% 0.432 0421 0.01079  0.406  0.449 0.0113

100% 20% 0.462 0.498 0.00763  0.404  0.495 0.00979

0% 20% 0.421 0.509  0.00476  0.405  0.553 0.00538
10% 20% 0.376  0.438  0.00907  0.363  0.492 0.01042
20% 20% 0.442 0.456  0.00877  0.436  0.515 0.00936
30% 20% 0.473  0.512 0.0054 0.445 0.430 0.01253
40% 20% 0.452 0.520 0.00385  0.441  0.550 0.00703
512 x 512 50% 20% 0.422  0.451 0.00918  0.412  0.502 0.00921
60% 30% 0.474  0.501 0.00669  0.491 0.546 0.00737-
70% 20% 0.447 0.480 0.00854  0.396  0.518 0.00913
80% 10% 0.431 0474 0.00733  0.422  0.513 0.01005
90% 30% 0.475 0.489 0.00587 0.458 0.516 0.00662
100% 30% 0.470 0.497  0.00676  0.461  0.522 0.00744

of 512 x 512 using 80% real data, it demonstrated a performance improvement of 0.80%.
The outcomes of the ablation study, conducted to assess the second hypothesis utilizing the

Corsican FireDB dataset, are presented in Figure 4.11b and Table 4.7.

86



Table 4.7: Results of training the model on the validation and test subsets of the Corsican
Fire Database dataset. The underlined results represent the baseline results from the model

trained with o« = 1.

Validation Dataset

Test Dataset

Resolution Synthetic Thres- Dice IoU Total Dice IoU Total
Data hold Score Score Error Score Score Error
0% 30% 0.879  0.884 0.00412 0.810  0.827 0.03198
10% 30% 0.871  0.878 0.00425 0.805  0.803 0.03238
20% 30% 0.872  0.878 0.00395 0.804  0.820 0.03191
30% 30% 0.881 0.890 0.0038 0.809  0.807 0.03232
40% 40% 0.871  0.864 0.00468 0.808  0.787 0.03325
128 x 128 50% 30% 0.880  0.889 0.00366 0.803  0.805 0.03207
60% 30% 0.878  0.896 0.00350 0.810 0.819 0.03195
70% 30% 0.871  0.880 0.00425 0.794 0.815 0.03233
80% 30% 0.878  0.876 0.00439 0.801  0.808 0.03275
90% 40% 0.865  0.836 0.00558 0.785  0.754 0.03470
100% 30% 0.877  0.892 0.00373 0.809  0.823 0.03193
0% 30% 0.893  0.905 0.00318 0.835  0.840 0.03165
10% 40% 0.900  0.890 0.00353 0.836  0.824 0.03188
20% 30% 0.899  0.903 0.00314 0.837  0.836 0.03150
30% 40% 0.898  0.880 0.00414 0.831  0.798 0.03274
40% 40% 0.899  0.878 0.00410 0.815  0.810 0.03234
256 x 256 50% 40% 0.903  0.894 0.00370 0.828  0.798 0.03277
60% 30% 0.907  0.915 0.00280 0.838  0.843 0.03128
70% 40% 0.908  0.892 0.00366 0.824  0.781 0.03320
80% 40% 0.900  0.889 0.00390 0.828  0.800 0.03276
90% 40% 0.822  0.784 0.00356 0.822  0.784 0.03307
100% 40% 0.908 0.898 0.00338 0.840 0.829 0.0318/
0% 40% 0.936  0.930 0.00239 0.866  0.837 0.03148
10% 30% 0.933  0.939 0.00213 0.865  0.852 0.03105
20% 40% 0.927  0.923 0.00268 0.861  0.830 0.03174
30% 30% 0.932  0.925 0.00260 0.862  0.837 0.03143
40% 30% 0.932  0.932 0.00220 0.863  0.851 0.03104
512 x 512 50% 30% 0.933  0.942 0.00190 0.862  0.850 0.03089
60% 40% 0.935  0.927 0.00255 0.859  0.822 0.03187
70% 30% 0.932  0.937 0.00213 0.864  0.849 0.03111
80% 30% 0.937 0.946 0.00179 0.873 0.869 0.03052
90% 30% 0.934  0.938 0.00212 0.868  0.860 0.03087
100% 30% 0.935  0.944 0.00212 0.868  0.848 0.03120

4.6.2 FLAME Dataset

When trained with the FLAME dataset, the model’s performance decreased by 3.56% and
1.28% at resolutions of 128 x 128 and 256 x 256, respectively. However, its performance

improved by 0.84% at a resolution of 512 x 512.

To obtain comparable or superior

performance in the 128 x 128, 256 x 256, and 512 x 512 training, the model required a high
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Table 4.8: Results of training the model on the validation and test subsets of the FLAME
dataset. The underlined results represent the baseline results from the model trained with

a=1.
Validation Dataset Test Dataset

Resolution Synthetic Thres- Dice IoU Total Dice IoU Total
Data hold Score Score Error Score Score Error

0% 30% 0.707  0.689 0.00096 0.703  0.702 0.00109

10% 20% 0.668  0.670 0.00100 0.684  0.678 0.00115

20% 20% 0.702  0.734 0.00081 0.697  0.737 0.00093

30% 30% 0.722 0.750 0.00077 0.725 0.711 0.00102

40% 20% 0.720  0.757 0.00073 0.708  0.726 0.00096

128 x 128 50% 20% 0.673  0.670 0.00103 0.684  0.758 0.00087
60% 20% 0.718  0.750 0.00076 0.715  0.777 0.00077

70% 20% 0.710  0.740 0.00079 0.714  0.727 0.00096

80% 20% 0.690  0.708 0.00091 0.706  0.739 0.00093
90% 20% 0.719  0.758 0.00075  0.728 0.753 0.0008}

100% 20% 0.675  0.706 0.00092 0.652  0.715 0.00106

0% 30% 0.767  0.752 0.00073 0.781  0.764 0.00079

10% 20% 0.743  0.751 0.00077 0.758  0.780 0.00078

20% 30% 0.754  0.750 0.00074 0.773  0.787 0.00072

30% 30% 0.748  0.726 0.00083 0.771  0.789 0.00073

40% 30% 0.734  0.730 0.00081 0.767  0.792 0.00070
256 x 256 50% 30% 0.763 0.749 0.00078 0.789 0.814 0.00064
60% 30% 0.756  0.763 0.00072 0.774  0.803 0.00067

70% 20% 0.743  0.736 0.00079 0.748  0.734 0.00088

80% 30% 0.741  0.699 0.00091 0.772  0.801 0.00073

90% 30% 0.745  0.731 0.00083 0.750  0.709 0.00104

100% 20% 0.748  0.746 0.00077 0.765  0.722 0.00096

0% 30% 0.829  0.841 0.00050 0.831  0.890 0.00041

10% 20% 0.827  0.825 0.00057 0.838  0.877  0.00045

20% 30% 0.834  0.830 0.00054 0.841  0.888 0.00041

30% 30% 0.827  0.796 0.00065 0.851  0.866 0.00049

40% 30% 0.829  0.796 0.00065 0.842  0.881 0.00044

512 x 512 50% 30% 0.813  0.801 0.00065 0.830  0.839 0.00058
60% 30% 0.837  0.818 0.00057 0.851 0.877 0.00044

70% 30% 0.827 0.24 0.00057 0.818  0.910 0.00032

80% 30% 0.836  0.813 0.00059 0.837  0.881 0.00045

90% 20% 0.822  0.832 0.00055 0.845  0.901 0.00037

100% 30% 0.837 0.843 0.00050 0.838 0.896 0.00039

proportion of real training data, incorporating 90%, 80%, and

90% of real data,
respectively. The results of the first ablation study on the FLAME dataset are presented

in 4.12a and Table 4.4. Integrating synthetic data during the training phase and real data

in the second ablation session led to modest but consistent improvements in the Dice Score

across all tested resolutions.

Specifically, when 90% synthetic data was integrated, the

model exhibited a 3.55% improvement at a resolution of 128 x 128. Incorporating 50%
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Table 4.9: Results of training the model on the validation and test subsets of the FireBot
dataset. The underlined results represent the baseline results from the model trained with
a=1.

Validation Dataset Test Dataset
Resolution Synthetic Thres- Dice IoU Total Dice IoU Total
Data hold Score Score Error Score Score Error
0% 30% 0.764  0.823 0.00318 0.674  0.721 0.00535
10% 20% 0.702  0.781 0.00439 0.674  0.765 0.00441
20% 30% 0.698  0.722 0.0062 0.665  0.701 0.00594
30% 30% 0.701  0.737 0.00587 0.674  0.721 0.00569
40% 30% 0.709  0.742 0.00567 0.676  0.725 0.0052
128 x 128 50% 20% 0.707  0.792 0.00461 0.682  0.783 0.00438
60% 20% 0.706  0.782 0.00500 0.670  0.755 0.00505
70% 20% 0.716  0.797 0.00489 0.685  0.778 0.00483
80% 30% 0.717  0.749 0.00578 0.678  0.722 0.00552
90% 20% 0.693  0.743 0.00576 0.659  0.720 0.00613
100% 30% 0.725 0.761 0.00542 0.696 0.742 0.00530
0% 30% 0.808  0.831 0.00275 0.714  0.727 0.00554
10% 30% 0.752  0.774 0.00512 0.726  0.754 0.00521
20% 20% 0.762  0.829 0.00367 0.735 0.815 0.00383
30% 30% 0.771  0.792 0.00476 0.746  0.775 0.00474
40% 30% 0.755  0.773 0.00522 0.730  0.757 0.00525
256 x 256 50% 20% 0.766  0.832 0.00356 0.742  0.822 0.00331
60% 30% 0.765  0.793 0.00464 0.741  0.781 0.00442
70% 20% 0.766  0.825 0.00382 0.744  0.813 0.00402
80% 30% 0.756  0.783 0.00483 0.735  0.773 0.0047
90% 20% 0.776 0.828 0.00385 0.752 0.815 0.00402
100% 20% 0.761  0.823 0.00393 0.738 0.811 0.00398
0% 30% 0.853  0.884 0.00244 0.777  0.797 0.00484
10% 20% 0.788  0.824 0.00415 0.767  0.812 0.00446
20% 30% 0.804  0.820 0.00436 0.787  0.809 0.00431
30% 20% 0.778  0.814 0.00407 0.763  0.806 0.00423
40% 30% 0.798 0.814 0.00419 0.781  0.804 0.00412
512 x 512 50% 20% 0.804  0.851 0.00363 0.777  0.836 0.00363
60% 20% 0.807  0.847 0.00356 0.790  0.840 0.00354
70% 30% 0.812 0.829 0.00418 0.793 0.820 0.00417
80% 30% 0.809  0.823 0.00423 0.788  0.808 0.00416
90% 20% 0.793  0.826 0.00431 0.781  0.823 0.00421
100% 30% 0.810  0.839 0.00391 0.789  0.829 0.00386

synthetic data at a resolution of 256 x 256 resulted in an improvement of 1.02%.
Ultimately, at a resolution of 512 x 512, the model exhibited a moderate 2.41%
improvement upon integrating 60% synthetic data. The results of the second ablation
study on the FLAME dataset are presented in Figure 4.12b and Table 4.8. Overall, the
results demonstrate that introducing synthetic data during training can enhance model

performance on the FLAME dataset, particularly at higher resolutions.
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Table 4.10: Results of training the model on the validation and test subsets of the BowFire
dataset. The underlined results represent the baseline results from the model trained with
a=1.

Validation Dataset Test Dataset
Resolution Synthetic Thres- Dice IoU Total Dice IoU Total
Data hold Score Score Error Score Score Error
0% 20% 0.413  0.480 0.00643 0.382  0.453 0.01085
10% 20% 0.456  0.510 0.00468 0.419  0.561 0.00619
20% 30% 0.397  0.435 0.00952 0.380  0.464 0.01228
30% 20% 0.329  0.353 0.02187 0.278  0.320 0.02143
40% 20% 0.459 0.477 0.0056 0.435 0.492 0.00636
128 x 128 50% 20% 0.432  0.490 0.00503 0.389  0.460 0.01097
60% 10% 0.394  0.447 0.01013 0.343  0.412 0.01367
70% 30% 0.343  0.358 0.01756 0.281  0.285 0.02322
80% 10% 0.390  0.450 0.01119 0.410  0.530 0.00793
90% 30% 0.336  0.342 0.01802 0.280  0.272 0.02448
100% 30% 0.453  0.482 0.00927 0.414  0.488 0.01068
0% 20% 0.462  0.498 0.00763 0.404 0.495 0.00979
10% 40% 0.443  0.425 0.01279 0.419  0.426 0.01334
20% 40% 0.363  0.329 0.01822 0.363  0.359 0.01779
30% 20% 0.448  0.477 0.00908 0.405  0.502 0.01019
40% 30% 0.479  0.489 0.00831 0.469 0.515 0.0089
256 x 256 50% 20% 0.457  0.500 0.00653 0.442  0.452 0.01051
60% 30% 0.483  0.493 0.00734 0.450  0.500 0.0077
70% 10% 0.458  0.529 0.00453 0.423  0.558 0.00591
80% 20% 0.349  0.362 0.01691 0.331  0.378 0.01681
90% 20% 0.415  0.447 0.01035 0.374  0.429 0.01191
100% 20% 0.484 0.513 0.00592 0.434 0.507 0.01077
0% 30% 0.470  0.497 0.00676 0.461  0.522 0.00744
10% 20% 0.463  0.471 0.00764 0.435  0.400 0.01192
20% 20% 0.468  0.503 0.00528 0.442  0.527 0.00559
30% 40% 0.475  0.489 0.00697 0.435  0.491 0.00974
40% 30% 0.515  0.535 0.00393 0.492  0.499 0.01102
512 x 512 50% 30% 0.515  0.529 0.00406 0.486  0.486 0.0122
60% 50% 0.519  0.516 0.00521 0.474  0.450 0.01449
70% 20% 0.430  0.498 0.00535 0.410  0.557 0.00694
80% 20% 0.471  0.490 0.00625 0.459  0.498 0.00878
90% 30% 0.520 0.538 0.00372 0462 0.483 0.01172
100% 40% 0.505  0.520 0.00537 0.499 0.509 0.0101

4.6.3 FireBot Dataset

The models trained using both the FireBot dataset and synthetic data demonstrated
performance declines of 2.37%, 0.7%, and 0.12% at input resolutions of 128 x 128,
256 x 256, and 512 x 512, respectively. The results were derived utilizing 80% of real data
at 128 x 128 and 256 x 256 resolutions and 90% at 512 x 512. The outcomes of this initial
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Figure 4.11: Model evaluation on the test subset using the SYN-FIRE and Corsican FireDB
datasets. (a) Dice Score when real data is substituted with synthetic data, and (b) Dice
Score when synthetic data is incorporated with real data. Image source: Arlovic et al. [5].
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Figure 4.12: Evaluation of the model on the test subset utilizing the SYN-FIRE and Flame
datasets. (a) Dice Score when actual data is substituted with synthetic data, and (b) Dice
Score when synthetic data is integrated with real data. Image source: Arlovic et al. [5].

ablation study are presented in 4.13a and Table 4.5. Furthermore, the second study, which
integrated synthetic and real data, significantly improved performance across all
resolutions. Integrating 128 x 128 with 100% synthetic data with 100% real data yielded a
3.26% enhancement. At 256 x 256, the incorporation of 90% synthetic data resulted in a
5.32% improvement, whereas at 512 x 512, a 2.06% improvement was attained by

integrating 70% synthetic data. The results of the second ablation study are shown in
in 4.13b and Table 4.9.
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Figure 4.13: Evaluation of the model on the test subset utilizing the SYN-FIRE and FireBot
datasets. (a) Dice Score when actual data is substituted with synthetic data, and (b) Dice
Score with the integration of synthetic data with real data. Image source: Arlovic et al. [5].

4.6.4 BowFire Dataset

The model, trained using the BowFire dataset and synthetic data, exhibited substantial
improvements in Dice Score at all resolutions. It achieved improvements of 10.21% at 128 x
128, 4.46% at 256 x 256, and 6.51% at 512 x 512 by integrating synthetic data with 50%,
80%, and 60% of real data, respectively. The results are shown in in 4.14a and Table 4.6.
In the second ablation study, the use of synthetic data in the training process resulted in
significant performance enhancements across all evaluated resolutions. At a resolution of
128 x 128, the Dice Score improved by 13.87% using 40% synthetic data. At 256 x 256,
a 16.09% improvement was observed, while at 512 x 512, performance increased by 8.24%.
The results of this second study are shown in 4.14b and detailed in Table 4.10.
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Figure 4.14: Evaluation of models on the test subset, trained using the SYN-FIRE and
BowFire datasets. (a) Displays the Dice Score when real data is replaced with synthetic
data, and (b) Displays the Dice Score when integrating synthetic data alongside real data.
Image source: Arlovic et al. [5].
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4.7 Statistical Analysis of Results

Statistical analysis was conducted to determine whether the observed improvements in
segmentation accuracy were statistically significant or attributable to random variation. A
paired T-test was employed to evaluate the impact of synthetic data in two ablation
studies across all datasets at resolutions of 128 x 128, 256 x 256, and 512 x 512 pixels. The
paired T-test was selected as the appropriate statistical method because it compares two
related samples, specifically the performance metrics of the same model architecture
trained with and without synthetic data [152]. This approach controls for variability by
treating each paired observation as a matched comparison, thereby isolating the effect of
synthetic data on segmentation performance. All reported p-values were below the
significance threshold of a = 0.05, confirming that the observed improvements in Dice
Scores were statistically significant [153].

The first ablation study demonstrated that the model performance can be maintained at
a similar level by substituting a portion of the real images with synthetic ones. Statistically
significant improvements in segmentation accuracy were observed by training on the BowF'ire
dataset with the addition of SYN-FIRE data (p = 0.031, p = 0.013, p = 0.028). The Dice
Score increased by 10.21%, 4.46%, and 6.51% at resolutions of 128 x 128, 256 x 256, and
512 x 512, respectively. The second ablation study revealed that additional synthetic data
had improved the model performance (p = 0.042, p = 0.030, p = 0.033). Adding synthetic
data to the FireBot dataset improved Dice Scores by 3.26%, 5.32%), and 2.06% at resolutions
of 128 x 128, 256 x 256, and 512 x 512, respectively. The second ablation study on the BowF'ire
dataset demonstrated the impact of synthetic data on segmentation performance, achieving

increases of 13.87%, 16.09%, and 8.24% in Dice Score across all resolutions.

4.7.1 Statistical Analysis of Ablation Study 1 Results

Models trained on real data from the Corsican Fire Database achieved statistically higher
Dice Scores across all tested resolutions than models that used real and synthetic data. The
Dice Score for real data at a resolution of 128 x 128 pixels was 0.809 4 0.18, significantly
higher (¢£(339) = 12.991, p = 0.006) than the 0.735 £ 0.199 achieved using 50% synthetic
data. At a resolution of 256 x 256, training with real data resulted in a Dice Score of
0.835 + 0.175, whereas training with 40% synthetic data achieved a score of 0.810 + 0.196,
t(339) = 5.241, p = 0.005. At a resolution of 512 x 512, real data produced a Dice Score
of 0.866 £ 0.187, barely surpassing (¢£(339) = 2.078, p = 0.002) the 0.862 £ 0.187 obtained
with 20% synthetic data. Models trained entirely on real data in the FLAME dataset
consistently achieved higher Dice Scores across all resolutions than models trained with a
mix of synthetic data. At 128 x 128 resolution, training with real data yielded a Dice Score
of 0.703 £ 0.056, which was greater (#(300) = 8.539, p = 0.003) than the 0.678 £ 0.056
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achieved with 10% synthetic data. Similarly, at 256 x 256 resolution, the Dice Score was
0.781 4+ 0.039 with real data, beating the 0.770 4 0.041 achieved when 10% of the data was
synthetic (¢(300) = 6.336, p = 0.002). At 512X 512 resolution, combining 30% synthetic data
slightly improved performance (#(300) = 4.048, p = 0.002) to a Dice Score of 0.838 + 0.030,
compared to 0.831 4+ 0.037 for real data. In the FireBot dataset, models trained on real data
consistently achieved higher or similar Dice Scores across all resolutions than models that
used synthetic data to some extent. At a 128 x 128 resolution, models trained solely with
real data produced a Dice Score of 0.674 4+ 0.249, compared to a lower score of 0.658 £ 0.239
(t(1985) = 6.135, p = 0.003) when 20% of the data was synthetic. Similarly, at 256 x 256
resolution, the real-data-only model achieved a Dice Score of 0.714+0.235, slightly exceeding
the 0.709 4 0.228 (#(1985) = 2.124, p = 0.002) score obtained with 20% synthetic data. At
512 x 512 resolution, model performance was consistent with a Dice Score of 0.776 + 0.219
for real data and 0.776 4+ 0.212 (¢(1985) = 0.275, p = 0.002) when 10% synthetic data
was utilized. When real data was substituted with synthetic data, the BowFire dataset’s
model performance was lower or equivalent at all resolutions. At a resolution of 128 x 128,
models trained entirely on real data achieved a Dice Score of 0.382 4 0.363, which is lower
(t(23) = 1.419, p = 0.013) than the 0.421 + 0.360 achieved when 50% of the data was
synthetic, t(23) = 1.252, p = 0.031. Training using real data at a resolution of 256 x 256
resulted in a Dice Score of 0.404 4 0.376, lower than the 0.422 4 0.372 achieved with 40%
synthetic data. At a resolution of 512 x 512, model performance decreased (¢(23) = 1.056,
p = 0.028), resulting in a Dice Score of 0.461 + 0.381 for real data and 0.491 £ 0.386 when
40% of real data was substituted with synthetic data. Figure 4.15 shows the paired t-test of
Dice Score changes in Ablation Study 1.

4.7.2 Results For Ablation Study 2

When synthetic data was combined with real data, the Corsican Fire Database dataset
exhibited equivalent or slightly improved model performance (¢(339) = 0.0079, p = 0.002)
at all resolutions. At a resolution of 128 x 128, the Dice Score for real data was 0.810£0.18,
which coincided with the model’s performance trained using 60% synthetic data containing
0.810 £ 0.182. At a resolution of 256 x 256, the model achieved a slightly higher (¢(339) =
1.741, p = 0.003) Dice Score of 0.840 £+ 0.181 with the inclusion of 100% synthetic data
alongside real data in contrast to 0.835 4 0.175 with only real data. At a resolution of
512 %512, incorporating 80% synthetic data resulted in a slight improvement (¢(339) = 4.336,
p = 0.001) in performance, providing a Dice Score of 0.872+0.187 compared to 0.866 +0.187
with only real data. The model’s performance improved modestly across resolutions while
combining synthetic and real data from the FLAME dataset. At a resolution of 128 x 128,
models exclusively trained on real data achieved a Dice Score of 0.703 4+ 0.056, which was
equivalent (£(300) = 0.806, p = 0.003) to the score of 0.706 + 0.054 when 90% synthetic data
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Ablation Study 1: Paired T-Test of Dice Score Changes
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Figure 4.15: The paired T-Test statistical analysis of Dice Score changes in Ablation Study
1.

was included. At a resolution of 256 x 256, the model utilizing 50% synthetic data obtained
a slightly superior (£(300) = 4.8651, p = 0.002) Dice Score of 0.789 + 0.038, in contrast to
0.781+0.039 with just real data. At a resolution of 512 x 512, the Dice Score of 0.851+0.029
was obtained by adding 60% synthetic data. This was greater (¢(300) = 13.855, p = 0.001)
than the 0.831 + 0.037 achieved with real data. When synthetic data was incorporated with
real data in the FireBot dataset, the model’s performance remained equivalent or slightly
improved across resolutions. At a resolution of 128 x 128, models trained solely on real data
achieved a Dice Score of 0.674 & 0.249, whereas adding 100% synthetic data resulted in a
higher score of 0.696 + 0.222 (¢(1985) = 9.434, p = 0.002). At a resolution of 256 x 256,
training utilizing 90% of synthetic data resulted in a Dice Score of 0.752 + 0.196, barely
beating (¢(1985) = 15.006, p = 0.003) the 0.714 + 0.235 achieved utilizing just real data. At
a resolution of 512x 512, model performance exhibited a small improvement (¢(1985) = 7.131,
p = 0.002), achieving a Dice Score of 0.776 £ 0.219 for real data and 0.793 + 0.193 when
integrating 70% synthetic data. When synthetic data was used to train the BowF'ire dataset,
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the model’s performance improved across all resolutions. At a resolution of 128 x 128,
models trained with an additional 90% synthetic data achieved an improved (¢(23) = 1.261,
p = 0.042) Dice Score (0.435 £ 0.395) relative to those trained exclusively on real data
(0.382 4+ 0.363). At a resolution of 256 x 256, combining 40% synthetic data with the real
data provided an improved (#(23) = 2.165, p = 0.030) Dice Score of 0.469+0.383, in contrast
to 0.404 + 0.376 obtained with only real data. At a resolution of 512 x 512, integrating 90%
synthetic data increased the Dice Score to 0.507+0.403, surpassing (¢(23) = 1.393, p = 0.033)
the 0.461 + 0.381 obtained with only real data. Figure 4.16 shows the paired t-test of Dice
Score changes in Ablation Study 2.

Ablation Study 2: Paired T-Test of Dice Score Changes
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Figure 4.16: The paired T-Test statistical analysis of Dice Score changes in Ablation Study
2.

4.8 Model Generalization on Unseen Real-Life Data

When a model is trained on synthetic data, it may fail to capture the full complexity,

variability, and noise of real-world scenarios. Because synthetic datasets are generated under
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assumptions and rules, they often contain biases or artifacts that models may exploit instead
of learning the true underlying structure of the problem. This raises the risk of overfitting
to artificial patterns, making it essential to test model generalization to ensure that learned
representations extend beyond the synthetic environment and remain valid in more realistic
or diverse conditions. In addition to validating our methodology using publicly available fire
datasets, we further assessed its practical applicability by evaluating the ablation-selected
top models on a separate dataset of 40 real indoor fire images. These images are part of
a newly developed dataset of real fire scenarios. The dataset was created through a series
of controlled fire experiments conducted at the State Firefighting School (DVg) in Zagreb.
Preparation for the experiment, the journey to Zagreb, and capturing real fire images in
two different indoor scenes took two full working days. In contrast, creating two synthetic
environments using NVIDIA Omniverse required only one working day and did not involve
travel, preparation, or risk of incident. All tests were conducted under the guidance of
experienced firefighters, ensuring that safety procedures were followed. We ignited various
materials commonly found in industrial and residential spaces to create realistic indoor fire
scenarios. During these controlled fire scenarios, we recorded high-resolution RGB + thermal
(visible + infrared) imagery, creating a robust dataset that captures the complexity of indoor
fires. This dataset is designed to be a reference point for real-world indoor fire detection.
Figure 4.17 shows that replacing real data with SYN-FIRE in Ablation Study 1 maintains or
improves the Dice Score across multiple datasets. Incorporating SYN-FIRE data alongside
real data in Ablation Study 2 yields further gains, indicating it is an effective complement,
with only a modest dip on BowFire.

While the SYN-FIRE results show consistent improvements, they do not reveal where
the model is focusing. To check that the improvements reflect plausible fire evidence rather
than synthetic artifacts, we examine model attention using Gradient-weighted Class
Activation Mapping (Grad-CAM). Grad-CAM is a post-hoc, class-discriminative
visualization method that computes the gradient of a target class score (logit) with respect
to a chosen convolutional layer feature maps, spatially averages those gradients to get
per-channel importance weights, forms a weighted sum of the feature maps, applies ReLU,
and upsamples the result to produce a coarse localization heatmap [154]. The resulting
saliency maps in Figure 4.18 highlight image regions that most influenced each prediction.
In our case, the highlighted areas align with flames and smoke, indicating that the model
distinguishes flame from non-flame pixels at a local scale. The activations are spatially
coherent rather than scattered, which is consistent with accurate pixel-wise segmentation.
These observations suggest that the model is learning structured and relevant features for
distinguishing between fire and non-fire areas, a crucial property for safety-critical
applications such as fire detection.

Our results show that synthetic datasets can help models generalize better, but they

are not a substitute for real-world data. It is also important to note that the dataset
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Figure 4.17: Evaluation of the model’s performance using 40 real-world scenario images left
out from the training dataset.

we assembled is particularly challenging and notably different from the datasets used for
model training. Lastly, since we based our experiments on a single architecture, U-Net++,
the effects of synthetic data could differ from those of other models. Adding more data
typically leads to better outcomes, but synthetic data may negatively impact specific model

architectures.

4.9 Conclusion

The effectiveness of deep neural networks in fire detection has been demonstrated to surpass
traditional techniques. Nevertheless, they require high-quality datasets with large amounts
of annotated data, which are time-consuming and highly expensive to gather. To address
this challenge, this research study introduced the SYN-FIRE dataset, an entirely synthetic,
publicly available dataset of indoor fires in industrial environments developed using NVIDIA
Omniverse. The dataset was designed to address key challenges associated with training
semantic segmentation models for fire detection in scenarios where real-world data is limited,
costly, or difficult to obtain.

The impact of SYN-FIRE was evaluated through benchmark experiments on multiple
publicly available datasets. It was observed that models trained exclusively on synthetic
data underperformed compared to those trained on real data. However, when synthetic

data was incorporated alongside real images, a consistent improvement in segmentation
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accuracy was achieved. This effect was particularly pronounced in the case of small
datasets, such as BowFire, where performance improvements ranged from 4% to 10%
depending on the resolution. Synthetic data was also an effective partial substitute for real
data, reducing the need for extensive manual annotation while maintaining model
performance. Additional advantages of synthetic data were identified regarding practical
feasibility and development time. For instance, it took approximately three days to collect
and annotate 40 real images, whereas a comparable quantity of synthetic images was
generated in the span of 30 minutes. Procedural generation further facilitated the rapid
production of large image sets with controlled variation in fire scenarios, object placement,
and environmental conditions.

Considering these benefits, several drawbacks of the SYN-FIRE dataset were recognized.
The current version inadequately represents varied environmental factors, realistic occlusions,
human presence, or the full complexity of smoke dynamics. These missing variables may limit
the generalizability of models trained solely on synthetic data. To address these limitations,
future initiatives will aim to improve the dataset by including a wider variety of textures,
lighting conditions, occlusion patterns, and fire-related behaviors. Moreover, more research
will be conducted to examine the impact of synthetic data on various state-of-the-art deep
learning architectures, providing extensive insights into its applicability for pixel-wise fire

segmentation tasks.
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RGB Image Grad-CAM

Figure 4.18: Comparison of original images and Grad-CAM overlays showing model attention
on fire regions.
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Conclusion

Fire is a complex phenomenon encompassing flame, heat, smoke, and combustion gases. The
visible flame and smoke arise from an exothermic reaction between a fuel and an oxidizer,
most often oxygen. These signals span multiple spatial and temporal scales, which makes
fire a strong target for dependable visual detection and segmentation. Recent work has
focused on large neural networks trained on large-scale datasets. These models can generalize
across domains, yet deployment in safety-critical industrial interiors must conform to limited
computation capabilities, low latency, and scarcity of labeled data. Traditional sensor-based
systems, such as smoke detectors or gas sensors often react slowly, are sensitive to their
placement, and suffer from airflow issues, frequently generating false alarms due to dust and
steam, which offer limited scene coverage. In contrast, image-based deep learning methods
can monitor wide areas, reason about context, and detect early visual cues.

This thesis introduces F2M, a fusion model that combines outputs from multiple
advanced neural networks to enhance fire segmentation in complex indoor scenes. F2M
integrates Monte Carlo dropout during inference to estimate predictive uncertainty, so each
pixel is labeled as fire or non-fire and receives an associated confidence score. We evaluated
six representative semantic segmentation architectures: FPN, U-Net, U-Net-++, MAnet,
DeepLabV3-+, and SegFormer. This set spans multi-scale encoder—-decoder CNNs and a
modern transformer-based design, providing architectural diversity. Our goal was to
integrate models with complementary inductive biases, allowing F2M to combine diverse
features and patterns for robust fire segmentation. Across experiments, F2M consistently
surpassed the evaluated convolutional networks. In this research, we tested the hypothesis

that combining the best-performing models as an ensemble would yield better results than
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using only the invididual best-performing model. It achieves higher Dice Scores and lower
Total Error at several target resolutions. At lower resolutions, F2M delivers a 4.02%
improvement over U-Net++ while maintaining robust generalization without overfitting.
Through this combination of accuracy, adaptability, and interpretability, F2M provides a
solid foundation for next-generation fire monitoring systems.

F2M enhances segmentation by combining multiple models, but its performance still
relies on the quality and diversity of the training data. Pixel-level fire annotations are rare
and costly to produce, especially for indoor scenes. To address this challenge, we
investigated how synthetic data can help train deep networks for pixel-level fire
segmentation when real data is limited. We introduced the SYN-FIRE dataset to study
indoor fires in industrial environments, comprising five distinct scenarios that vary in time
of day, camera viewpoint, and fire characteristics. The 3D scenes were created in NVIDIA
Omniverse, and the resulting images were collected and annotated at the pixel-level to
provide accurate ground truth masks for each image. SYN-FIRE dataset advances fire
detection by providing a fully synthetic and publicly available dataset of indoor industrial
fire scenes created with NVIDIA Omniverse, designed to train deep neural networks for
pixel-level fire segmentation when real data is scarce. Benchmarks showed that models
trained only on synthetic images performed worse than those trained on real images.
However, combining synthetic data with real data consistently improved accuracy, with
gains ranging from 4% to 10% on small datasets, such as BowFire, depending on the
resolution. The dataset also reduces annotation effort and development time, as generating
a comparable set of synthetic images took approximately 30 minutes, while collecting and
labeling 40 real images required about three days. Procedural generation enables the rapid
creation of large image sets with controlled variation in fire behavior, object placement,
and environmental conditions. Current limitations in environmental diversity, realistic
occlusions, human presence, and smoke complexity may constrain generalization if these
synthetic datasets are used alone. We plan future versions with richer textures, lighting
conditions, occlusion patterns, and fire dynamics, along with broader evaluations across
modern deep neural network architectures.

Future work will continue to build on the foundations laid out in this doctoral thesis
by exploring new directions for improving fire detection with limited real-world data. To
achieve this, we will investigate methods that can replicate the complex visual characteristics
of smoke and flames under varying conditions. This approach supports the broader aim
of creating data-rich training pipelines that reduce the need for time-consuming manual
collection and labeling, while still allowing for the creation of varied and realistic examples
for model development. Building on this idea, semi-supervised learning provides a method
for combining labeled and unlabeled data during training, thereby reducing reliance on large
annotated datasets. At the same time, it enables the model to retain strong accuracy and

generalization, making it more practical for real-world use, where labeled fire data may be
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limited or difficult to obtain. We will incorporate temporal information into our models to
enable video-based fire detection. This will enable the algorithm to account for motion and
temporal variations, which is particularly beneficial for detecting early-stage fires or reducing
false positives. These future directions offer strong potential for advancing fire detection
systems that are more adaptable and reliable. By combining synthetic data generation,
reduced dependence on labels, and temporal awareness, we aim to address some of the core
limitations outlined in this thesis and support safer and more responsive fire monitoring

solutions across various real-world use cases.
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